

Strengthening mechanisms in superalloys

Ni-based superalloys

- a) solid solution strengthening (Mo and W)
- b) addition of elements, e.g., Co which decrease the solubility of others to promote ppt of intermetallics
- c) Al and Ti to form ordered FCC intermetallic precipitates of γ^I-phase [Ni₃Al], [Ni₃Ti]
- d) Carbides on grain boundaries (pin boundaries to stop shear) i.e. control grain boundary sliding

Some effect of elements on superalloys

Co-base	Ni-base
Nb, Cr, Mo, Ni, W, Ta	Co, Cr, Fe, Mo, W, Ta
Ti	W, Ta, Ti, Mo, Nb
Cr	Cr
Cr	Cr, Mo, W
Mo,W	Mo, W
	Al, Ti
Al, Cr, Ta	Al, Cr, Ta
Cr	Cr
B, Zr	B, Zr
	Co-base Nb, Cr, Mo, Ni, W, Ta Ti Cr Cr Mo,W Al, Cr, Ta Cr B, Zr

		Wrought alloys											
Alloy	%Ni	% Cr	% Co	% Mo	% AI	% T i	% Nb	% C	%В	%Zr	% Other		
Incorel V.750	73	15			0.8	2.5	0.9	0.04			6.8 Fc		
Lidimet 500	53.6	18	18.5	4.0	2.9	2.9		0.08	0.006	0.05			
Udimet 700	53.4	15	18.5	5.2	4.3	3.5		0.08	0.03				
Waenslow	58.3	19.5	13.5	4.3	1.3	3.0		0.08	0.006	0.06			
Asteolov	55.1	15.0	17.0	5.2	4.0	3.5		0.06	0.03				
René 41	55.3	19.0	11.0	10.0	1.5	3.1		0.09	0.005				
Nimonic 80A	74.7	19.5	1.1		1.3	2.5		0.06					
Nimonic 90	57.4	19.5	18.0		1.4	2.4		0.07					
Nimonic 105	53.3	14.5	20.0	5.0	1.2	4.5		0.20					
Nimonic 115	57.3	15.0	15.0	3.5	5.0	4.0		0.15	•••				
		Cast alloys											
B. 1900	64	8.0	10.0	6.0	6.0	1.0		0.10	0.015	0.1	4.0 Ta		
MAR-M200	60	9.0	10.0		5.0	2.0	1.0	0.13	0.015	0.05	12 W		
Inconel 738	61	16.0	8.5	1.7	3.4	3.4	0.9	0.12	0.01	0.10	1.7 Ta, 2.0	51	
René 77	58	14.6	15.0	4.2	4.3	3.3		0.07	0.016	0.04			
René 80	60	14.0	9.5	4.0	3.0	5.0	1.4.4	0.17	0.015	0.03	4.0 W		

Co-based superalloys

- At room temperature Co: HCP crystal structure
- At 417°C Co undergoes an allotropic transformation and changes to an FCC structure
- Typical composition
 - 50-60 %Co
 - 20-30 %Cr
 - 5-10 %W
 - 0.1-1 %C
- Strengthening:
 - solid solution strengthening
 - carbide precipitation
- Lower strength of cobalt alloys at intermediate temperatures due to a lack of γ^I

cast Ni	-base	e sup	erall	oys a	t 3 T	"s				
Characteristic rupture strengths, MPa										
	650°C 815°C 982°C									
Alloy	100h	1000h	100h	1000h	100h	1000h				
Wrought										
Inconel X-750	552	469	179	110	24					
Udimet 700		703	400	296	117	5				
Astroloy		772	407	290	103	5				
	1	Ca	st							
IN-100			503	379	172	10				
MAR-M246			565	448	186	12				

Chemical composition of **directionally solidified** Ni-base superalloys

Alloy	Composition, %											
	Cr	Co	W	Мо	Та	Nb	Ti	AI	Hf	В	Zr	С
Columnar grain alloys												
MAR-M200 + Hf	9	10	12			1.0	2.0	5.0	2.0	0.015	0.08	0.14
MAR-M246 + Hf	9	10	10	2.5	1.5		1.5	5.5	1.5	0.015	0.05	0.15
MAR-M247	8.4	10	10	0.6	3.0		1.0	5.5	1.4	0.015	0.05	0.15
Rene 80H	14	9.5	4	4			4.8	3.0	0.75	0.015	0.02	0.08
Single Crystal alloys												
PWA 1480	10	5	4		12		1.5	5				
PWA 1484 (3% Re)	5	10	6	2	8.7			5.6	0.1			
CMSX-2	8	5	8	0.6	6		1.0	5.5				
CMSX-3	8	5	8	0.6	6		1.0	5.5	0.15			
SRR99	8.5	5	9.5		2.8		2.2	5.5				

