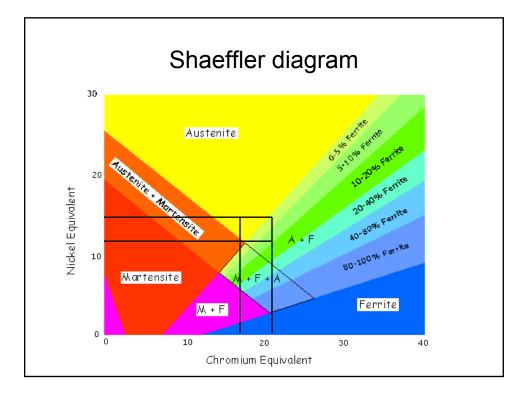


Relative permeability measurements (304)

Reduction in thickness (t _o -t)/t _o	Vickers hardness, HV	Relative permeability for H = 4000 A/m	Relative permeabiltiy for H=16000 A/m 1.0040	
0	175	1.0037		
0.14	218	1.0048	1.0050	
0.32	315	1.0371	1.062	
0.65	390	1.540	2.120	
0.85	437	2.200	4.750	

Chemical composition of 304					
Element	AISI 304				
Carbon	0.08 max				
Silicon	0.75/1.00 max				
Manganese	2.00 max				
Sulphur	0.03 max				
Phosphorus	0.045 max				
Chromium	18.0-20.0				
Molybdenum	-				
Nickel	8.0-10.5				
Titanium	-				
Niobium	-				

Shaeffler diagram

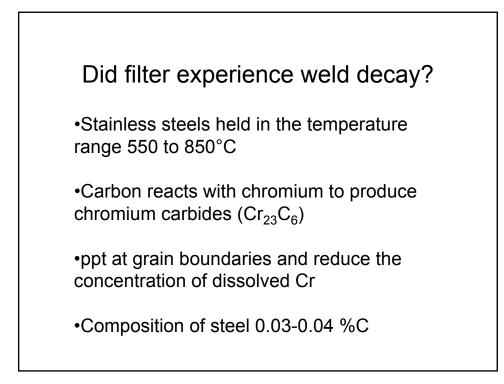

Cr equivalent = Cr + Mo + 1.5Si + 0.5 Nb

18 – 21.5

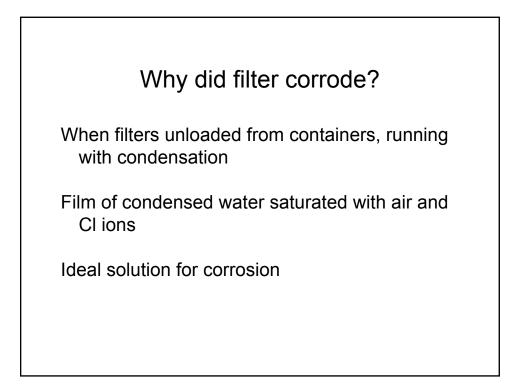
Ni equivalent = Ni + 30C + 0.5 Mn

11.4 – 13.9

Bottom of austenite field



Depending on precise composition 304 could be unstable at room Temperature


Cold work could trigger a displacive Transformation where some of the austenite forms martensite

Testing samples from filter

Component	Vickers hardness, HV	Magnetic attraction	
Coupling	180	Very weak	
Rod/wire	350	Weak	
Rod/wire	430	Strong	

Kinetics of sensitization					
Wt % C in steel	Temp. (°C) for fastest sensitization	Sensitization time (min)			
0.08	800	0.5			
0.06	730	2			
0.05	660	10			
0.04	620	60			
0.03	600	600			

Why did filter corrode? During welding high temperature oxide forms – High temperature oxides offer less corrosion protection Corrosion occurred at main attachment weld Solution: Remove oxide with a pickling solution of nitric and hydrofluoric acids Produces clean surface which can passivate in air naturally

Why did filter corrode?

What about outside of filter where the oxide layer had been ground off?

Rough cold worked surface produced by grinding is more liable to corrode than a smooth stress-free one

Solution: Stainless steel required for critical applications is often cleaned through "electroploishing"

Dissolves away cold worked layer