

Range of properties/cost

Metal	Yield Strength (MPa)	Density (Mg/m³)	Cost (US\$/tonne)
High-carbon steel	350-1600	7.8	200
Low-alloy steels	290-1600	7.8	230-330
High-alloy steels	170-1600	7.8	1400-1800
Cast irons	50-400	7.4	160
Aluminum 2000 series	200-500	2.8	1430
Titanium	170	4.5	6020
Copper	75	8.9	1330
Superalloys	800	7.9	6500

Table 1: from Ashby, M. F. ; Jones, D.R.H "Engineering Materials 2" Butterworth-Heinman, Table 1.6, p10

Elastic modulus for various materials

E (GPa)	Metal	E (GPa)
14	Ni	207
45	Be	300
70	AI_2O_3	400
105	В	400
120	BeO	400
130	SiN	400
205	SiC	500
207	С	700
	E (GPa) 14 45 70 105 120 130 205 207	E (GPa) Metal 14 Ni 45 Be 70 Al ₂ O ₃ 105 B 120 BeO 130 SiN 205 SiC 207 C

Fe as a base material **Advantages Disadvantages** High melting point – $1540^{\circ}C = 0.4T_{M}$ BCC phase has a ductile-to-brittle Retains strength to high temperatures transition: brittle at low T_H = 450°C temperatures Highest E of the common metals High specific gravity 7.8 gm/cm³ E = 205 GPa Common - thousands of years supply Cheap: easy to make: $Fe_2O_3 + 3CO = 2Fe + 2CO_2$ Easy to recycle - Over 50% recycled Ductile - easy to hot or cold form by rolling, forging, extrusion (BCC or FCC) Can be cast (Fe and Steel) Easy to weld Heat treatable to a wide range of strengths and toughness values Easy to alloy dissolve large amounts of Cr, Ni, Co, Cu Stainless alloys; abrasion-resistance alloys

