

Gen	eral c	harac	teristic	S	
Property	ΑΙ	Mg	Ti	Cu	Fe
E (GPa)	70	45	120	130	212
M.P. (°C)	660	650	1668	1083	1536
Density (gms/cm ³)	2.70	1.74	4.51	8.96	7.86
Resistivity ($\mu\Omega$ -cm)	2.8	4.6	3.2	1.7	10.0
Specific resistivity (μΩ gms /cm²)	7.7	8.0	14.5	15.5	78.6

N.B. Resistivity = property of a material which resists the flow of electrical current

Metal	Price (US\$/tonne)	Price relative to carbon steel
Carbon steel	225	1
Aluminum	1000	4
Stainless steel	650	3
Copper	2300	10
Zinc	998	4
Nickel	6200	28
Magnesium	2600	12
Tin	5400	25
Titanium	6612	30

	non-h treata	neat ables	heat tre	atables
AI>99.0%	1xxx (1	foil)		
Copper			2xxx+Mg	+Mn (aircraft)
Manganese	Зххх	+Si		
Magnesium	5xxx	+Mn+Cr		
Mg+Si			6xxx+Cu	+Si+Cr+Mn
Zinc			7xxx+Mg	
Other elements			8xxx	(Li-aircraft

Major effects of alloy additions

- Cu: High strength from age hardening, not weldable (AA2xxx)
- Mn: Solution hardening (AA3xxx)
- Mn+Mg: Solution hardening even better
- Mg: Solution hardening best corrosion resistance next to pure AI (AA5xxx)
- Mg+Si: Moderately heat treatable and corrosion resistance and weldability – good medium alloy (AA6xxx)
- Zn+Mg: High strength, not weldable (AA7xxx)
- Alclad
 - High purity AI skin for corrosion resistance
 - May protect galvanically

ĨV	rechanical p	ropenies				
	Non Heat Treatables					
Alloy	Y.S. (max)	Applications				
1xxx	97	1100 – foil, fin stock				
3xxx	160	3104 – canstock				
5xxx	180	5052 – transportation				
	Heat Trea	tables				
2xxx	402-435	2024 – aircraft				
7xxx	270-300	6061 – ladders, bikes				
6xxx	450-590	7075 – aircraft				

Typical mechanical properties and applications

				Tenslie strength		d strength		
Alloy number*	Chemical composition, wt %†	Condition‡	ksi	MPa	ksi	MPa	Elongation, %	Typical applications
			Wroug	ght alloys				
1100	99.0 min Al, 0.12 Cu	Annealed (-O) Half-hard (-H14)	13 18	89 (av) 124 (av)	3.5 14	24 (av) 97 (av)	25 4	Sheet metal work, fin stock
3003	1.2 Mn	Annealed (-O) Half-hard (-H14)	17 23	117 (av) 159 (av)	5 23	34 (av) 159 (av)	23 17	Pressure vessels, chemical equipment, sheet metal work
5052	2.5 Mg, 0.25 Cr	Annealed (-O) Half-hard (-H34)	28 38	193 (av) 262 (av)	9.5 26	65 (av) 179 (av)	18 4	Bus, truck, and marine uses, hydraulic tubes
2024	4.4 Cu, 1.5 Mg, 0.6 Mn	Annealed (-O) Heat-treated (-T6)	32 64	220 (max) 442 (min)	14 50	97 (max) 345 (min)	12 5	Aircraft structures
6061	1.0 Mg, 0.6 Si, 0.27 Cu, 0.2 Cr	Annealed (-O) Heat-treated (-Tó)	22 42	152 (max) 290 (min)	12 35	82 (max) 241 (min)	16 10	Truck and marine structures, pipelines, railings
7075	5.6 Zn, 2.5 Mg, 1.6 Cu, 0.23 Cr	Annealed (-O) Heat-treated (-Tó)	40 73	276 (max) 504 (min)	21 62	145 (max) 428 (min)	10 8	Aircraft and other structures

Mechanical properties of CP aluminum

Alloy	Temper	Tensile strength, psi	Tensile yield strength,* psi	Elon- gation, % in 2 in	Hard- ness, [†] Bhn	Shear strength, psi	Fatigue limit,‡ psi
1199	0	6,500	1,500	50			
	H18	17,000	16,000	5			
1180	0	9,000	3,000	45			
	H18	18,000	17,000	5			
1060	0	10,000	4,000	43	19	7,000	3000
	H14	14,000	13,000	12	26	9,000	5000
	H18	19,000	18,000	6	35	11,000	6500
EC	0	12,000	4,000	23 [§]		8,000	
	H14	16,000	14,000			10,000	
	H19	27,000	24,000	2.5 [§]		15,000	
1145	0	11,000	5,000	40		8,000	
	H18	21,000	17,000	5		12,000	
1100	. 0	13,000	5,000	35	23	9,000	5000
	H14	18,000	17,000	9	32	11,000	7000
	H18	24,000	22,000	5	44	13,000	9000

Non-heat treatable alloys

5xxx

- For welded structures can't use cold worked "H" strengths
- Max. annealed strengths 134-170 MPa
- Therefore max. design strength for welded structures i.e., fishboats etc.
- Best corrosion resistance and strength of all the alloys

Alloy	% Composition	Applications
5005	0.8 Mg	Appliances; utensils; architectural trim; electrical conductors
5050	1.4 Mg	Builders' hardware; refrigerator trim; coiled tubes
5052	2.5 Mg, 0.25 Cr	Sheet metal work; hydraulic tubes; appliances; bus, truck and marine uses
5056	0.12 Mn, 5.1 Mg, 0.12 Cr	Cable sheathing; rivets for magnesium; screen wire; zippers
5083	0.7 Mn, 4.45 Mg, 0.15 Cr	Unfired, welded pressure vessels; marine, auto, and aircraft parts
5086	0.45 Mn, 4.0 Mg, 0.15Cr	cryogenics; TV towers; drilling rigs; transportation equipment; missile components; armor plate
5154	3.5 Mg, 0.25 Cr	Welded structures; storage tanks; pressure vessels; salt-water service
5252	2.5 Mg	Auto and appliance trim
5254	3.5 Mg, 0.25 Cr	Hydrogen peroxide and chemical storage vessels
5356	0.12 Mn, 5.0 Mg, 0.12 Cr	Welding rod, wire, and electrodes
5454	0.8 Mn, 2.7 Mg, 0.12 Cr	Welding structures; pressure vessels; marine service; tubing
5456	0.8 Mn, 5.1 Mg, 0.12 Cr	High-strength welded structures; storage tanks; pressure vessels; marine service
5457	0.3 Mn, 1.0 Mg	Anodized auto and appliance trim (good formability in annealed temper)
5652	2.5 Mg, 0.25 Cr	Hydrogen peroxide and chemical storage vessels
5657	0.8 Mg	Anodized auto and appliance trim (good brightness)