

	Types	Major Alloy Additions	AISI	
•	Ferritic - α	Fe-Cr	4xx	
•	Martensitic	Fe-Cr-C	4xx	
•	Austenitic - γ	Fe-Ni-Cr	Зхх	
•	Duplex (α+γ)	Fe-Cr-Ni		
•	Precipitation hardened	Fe-Cr-Ni		
•	Super ferrites & austenitics	Higher alloy versions of 1 & 3		

Other alloying elements and their purposes

Element	Amount (%)	Purpose
Cr	12-30	Cr_2O_3 – gives stainless character, stabilises α phase
Ni	0-25	Stabilises γ phase (FCC)
Мо	0-9	Reduces pitting and crevice corrosion: stabilises γ -phase
Ν	<0.5	Reduces pitting/crevice corrosion; stabilizes γ -phase
Ti, Nb	<1	Strong carbide formers; reduce sensitization
С	<0.15 except martensitic grades	Hard martensite for cutting edges; stabilizes γ -phase
Mn	0-12	Ni replacement; stabilizes γ-phase

Ferritic and martensitic stainless steels								
			Martensitic					
	430	434	409	406	446	410	440	
%Cr	16-18	16-18	16-18	13	23-27	11.5-13	16-18	
%C	0.12 max	0.12 max	0.03	0.03	0.03 max	0.15 max	0.6-1.2	
Other		1%Mo	0.25% Ni 0.5%Ti	3.0% Al 0.4%Ti				
Applications	Deco tri	rative m	Heat	applicati	ions			
							18	

AISI	Tempering temperature		Yield strength (0.2% offset)		5	l'ensile trength	Elongation	Bedevil	
	۰F	°C	ksi	MN/m ²	ksi	MN/m ²	(50.8 mm), %	of area, %	Toble 7 5
03, 410.	None		40	275.8	75	517.1	30	65	
	(annealed)		2027	1.111.12.1110					
416, 416Se	400	204	145	999.8	190	1310.1	15	55	
	600	315	140	965.3	185	1275.6	15	55	
	800	426	150	1034.3	195	1344.5	17	55	Tanaila proportion
	1000	538	115	792.9	145	999.8	20	65	rensile properties
	1200	648	85	586.1	110	758.5	23	65	Properties
	1400	760	60	413.7	90	620.6	30	70	
44	No	ne	95	655	120	827.4	17	55	
	(anne	aled)							
	400	204	150	1034.3	200	1379	15	55	
	600	315	145	999.8	190	1310.1	15	55	
	800	426	150	1034.3	200	1379	16	58	
	1000	538	120	827.4	145	999.8	20	60	
	1200	648	105	724	120	827.4	20	70	
20	No		50	144.9	05	***	26		
20	(1000	(hale	~	344.0	**	033	25	33	
	400	204	200	1179	255	1759.3	10	16	
	600	115	195	1344 5	250	1730.2	10	35	
	800	476	200	1179	250	1759.3	10	35	
	1000	538	145	000 5	170	11730.2	10	35	
	1200	648	85	586 1	115	707.0	20	**	
				500.1		174.5	20	33	
31	No	ne	95	655	125	861.9	20	60	
	(anne	aled)							
	400	204	155	1068.7	205	1413.5	15	55	
	600	315	150	1034.3	195	1344.5	15	55	
	800	426	155	1068.7	205	1413.5	15	60	
	1000	538	130	896.4	150	1034.3	18	60	
	1200	648	95	655	125	861.9	20	60	
40A	No	ne	60	413.7	105	724	20	45	
	(anne	aled)					0.0309	10.202	
	600	315	245	1689.3	265	1827.2	5	20	
40 B	No		63	177.6	107		. 10		
408	NO	ne	62	427.5	107	131.8	18	35	
	(anne	216	270	10(17	200	1020 /			
	000	315	2/0	1861.7	280	1930.6	3	15	
40C	No	ne	70	482.7	110	758.5	13	25	33
	(anne	aled)							55
	600	315	275	1896.1	285	1965.1	2	10	

Effect of tempering temperature on corrosion resistance and hardness

Fig. 7—Tempering temperature—Effect on corrosion resistance of 13.0% Cr steels (hardened from 1040°C) with various carbon contents.

- Can temper at 200-525°C and get same hardness but drastic loss in corrosion resistance when Cr carbides
 precipitate into the matrix
 - Decrease Cr content of matrix therefore lose stainless character

35

Toughness and temper

- Toughness minimum at 500°C
- 2 optimum tempering temperatures:
 - 350°C higher strength, moderate toughness
 - 650°C moderate strength, high toughness
- Avoid 500 °C temper embrittlement (ppt. of carbides and nitrides at the grain boundaries)

39