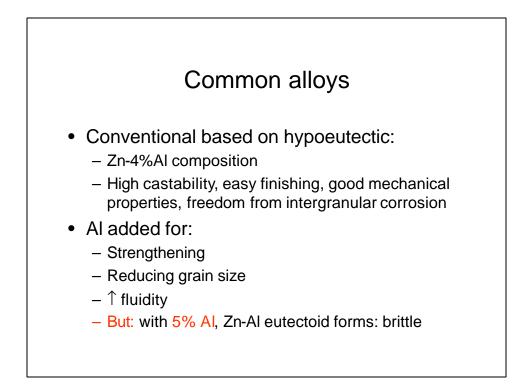
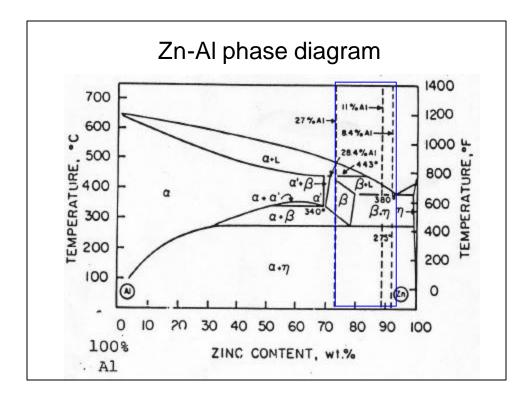
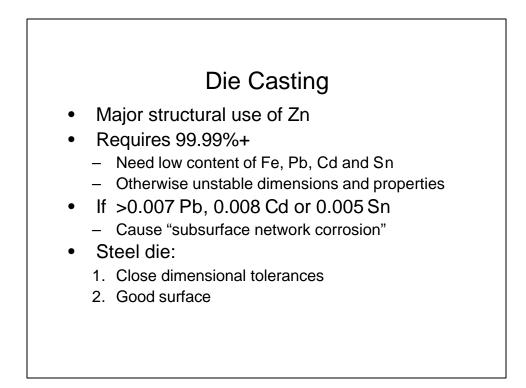
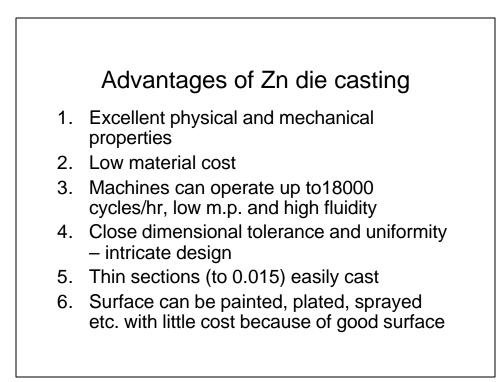

Mechanical properties of wrought Zn alloys

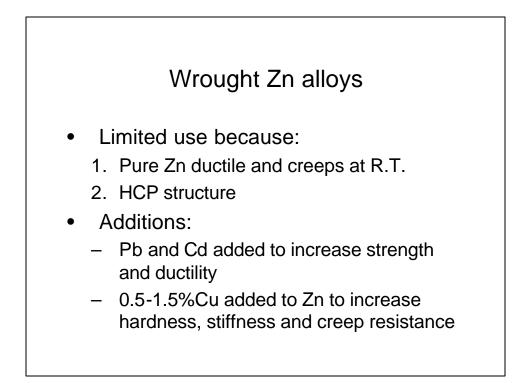

Alloy	Cold-rolled		nsile ngth	Elonga-	
composition	Orientation	MPa	ksi	tion, %	Typical uses
Zn-0.08 Pb	Longitudinal	145	21.0	50	Drawn battery cans, eyelets, fuse
	Transverse	186	27.0	40	links, and a variety of articles drawn, formed and spun
Zn-0.06 Pb-0.06 Cd	Longitudinal	150	22.0	40	Drawn battery cans, eyelets and
	Transverse	200	29.0	30	grommets; extruded battery cans address plates, laundry tags
Zn-1.0 Cu	Longitudinal	170	25.0	45	Weatherstrips and drawn and
	Transverse	210	31.0	28	formed articles requiring stiffness
Zn-0.8 Cu-0.15 Ti	Longitudinal	210	31	40	Corrugated roofing, leaders and
	Transverse	280	40	25	gutters, and other uses requiring maximum creep resistance
	S	uperpl	astic Z	n alloy	
Zn-22 Al-0.5 Cu-0.01 Mg	As rolled	310	45	27	Electronic enclosures,
A CARLES AND A CARLES AND A	Annealed	400	58	11	cabinets and panels,
					business machine parts

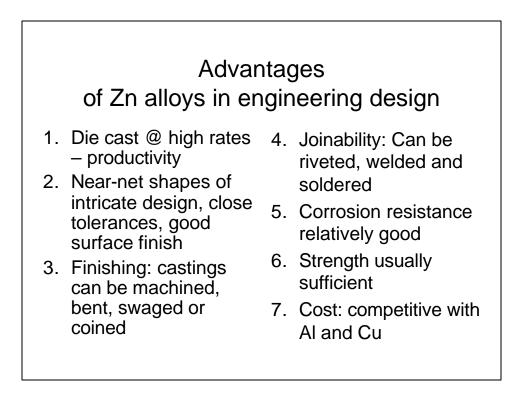


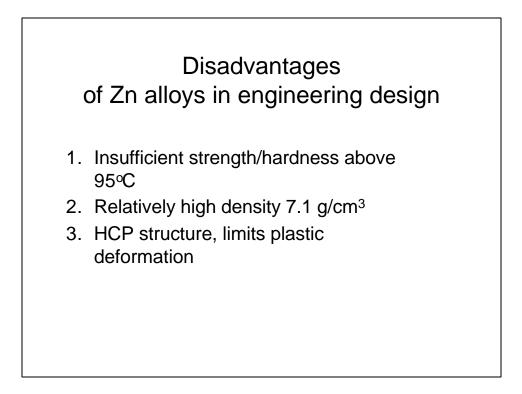
	-	
Applications of	Zn	
	USA	World
 Largest use: galvanizing: 	52	45
– Dipping		
- Electroplating		
 Alloying element in brass 	14	21
 Pressure die casting 	23	15
 Other uses 	11	19
 Very little wrought 		






	% Al	% Cu	% Mg	% Ni
Alloy 3	4.1	0.10*	0.04	
Alloy 5	4.1	1.0	0.045	
Alloy 7	4.1	0.10*	0.015	0.015
ZA-8	8.4	1.0	0.022	
ZA-12	11.0	0.87	0.022	
ZA-27	27.5	2.2	0.015	


Zinc casting alloys: mechanical properties


Property Die cast Die cast Permanent mold Permanent mold Mold Sand cast Sand cast HT D Tensile strength, b in ⁻² ×10 ³ (MPa) 41 48 32–37 \$3–56 40–46 45–50 \$58–64 45–47 \$60 \$10–3410 \$10–3400 \$10–340<	
Ib in ⁻² x10 ³ (MPa) (283) (331) (221-255) (365-386) (276-317) (310-345) (393-414) (400-441) (310-324) (40 Yield strength, 0.2% offset, 30 41-43 30 36-40 45-48 \$3 37 \$ 1b in ² x10 ³ (MPa) (2077) (283-296) (2077) (248-276) (310-331) (365) (255) (35 Young's modulus, 12.4 — 12.0 — 10.9 11.5	Die
0.2% offlet, lb in ² ×10 ² (MPa) 30 41-43 30 36-40 45-48 53 37 5	
lb in ⁻² ×10 ⁶ (GPa) (85.5) (83) (83) (75) (79)	
Elongation, % in 2 in, (51 mm) 10 7 1-2 6-10 1-3 1.5-2.5 4-7 3-6 8-11 2.	1 mm) 1

