Lecture 6: Strengthening of Plain Carbon Steels

MMat 380

Contributions to strength in steels

- Base material
- •Solid solution strengthening (i.e., %Mn)
- •Grain size (ferrite)
- Precipitates (distance between ppts)
- Cold work (dislocation density)

Steels - Fe-C-Mn alloys

- Mn added as ferromanganese
 - Helps to de-sulpherize steel MnS (Fe-S brittleness)
 - Powerful solid solution strengthener
 - Powerful effect on heat treating med. %C (0.3%C) and high %C steels which are usually Q&T

3

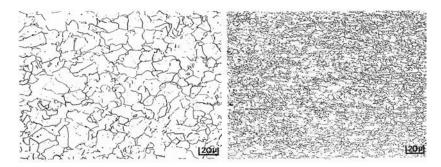
AISI-SAE No.	% C	% Mn	
1006	0.08 max.	0.25-0.40	
1010	0.08 - 0.13	0.30 - 0.60	
1015	0.13 - 0.18	0.30 - 0.60	
1020	0.18 - 0.23	0.30 - 0.60	
1025	0.22 - 0.28	0.30 - 0.60	
1030	0.28 - 0.34	0.60 - 0.90	1xxx - %C
1035	0.32 - 0.38	0.60 - 0.90	1 A A A - /0 C
1040	0.37 - 0.44	0.60 - 0.90	in steel
1045	0.43 - 0.50	0.60 - 0.90	111 21661
1050	0.48 - 0.55	0.60-0.90	
1055	0.50 - 0.60	0.60 - 0.90	
1065	0.60 - 0.70	0.60 - 0.90	
1070	0.65 - 0.75	0.60-0.90	
1075	0.70 - 0.80	0.40 - 0.70	
1080	0.75 - 0.88	0.60 - 0.90	
1085	0.80 - 0.93	0.70 - 1.00	
1090	0.85-0.98	0.60 - 0.90	
1095	0.90 - 1.03	0.30-0.50	

P, 0.040 max; S, 0.05 max.

Strengthening low C steels (0-0.3%C)

2 major ways:

- increase carbon content
 - sacrifice % elongation; toughness because of Fe₃C
- · decrease grain size
 - increase strength but doesn't affect ductility
 - Hall-Petch Equation $\sigma_y = \sigma_o + kd^{-1/2}$ d = grain size (mm)
- ∴ better strength without sacrificing ductility and toughness


trend: use fine grained steels and lower C content

5

Examples

ASTM	Grain	σ _v (MPa)	
No		ý	
5	Coarse	250	
8	Fine	300	
12-13 Very fine		500	

Grain size and strength

335 MPa

540 MPa

7

ASTM grain size

Grain boundaries act as barriers to dislocation motion

 $n=2^{N-1}$

 $n = \# grains/in^2 @ 100x mag$

N = ASTM grain size No

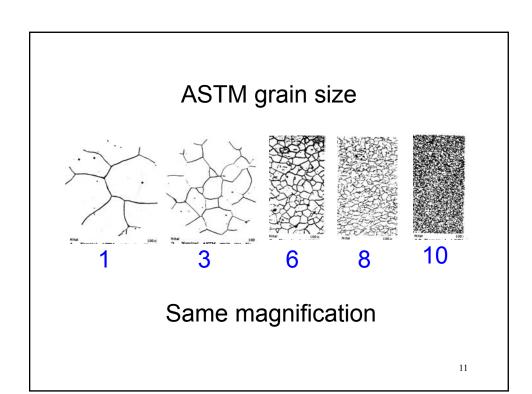
Note: Table 2.1 pg. 74 Smith

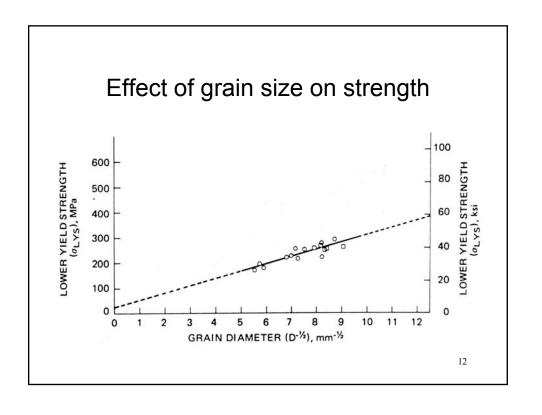
ASTM grain size

TABLE 2-1 Grain-size number as related to grain count

Timken- ASTM No.		Grains per square inch of image at 100 \times			Grains per sq millimeter
		Maximum	Minimum	Mean	(mean actual)
_	3	0.088	0.044	0.06	1
_		0.176	0.088	0.125	2
_		0.35	0.176	0.25	4
	0	0.71	0.35	0.50	8
-	1	1.41	0.71	1.0	16
1	2	2.83	1.41	2.0	32
1	3	5.66	2.83	4.0	64
	4	11.3	5.66	8.0	128
ĺ	5	22.6	11.3	16	256
	6	45.2	22.6	32	512
	7	90.5	45.2	64	1024
1	8	181	90.5	128	2048
_	9	362	181	256	4096
	10	724	362	512	8200
	11	1448	724	1024	16400
	12	2896	1448	2048	32800

9


Unit conversions


ASTM #1

16 grains/mm² x $(25.4)^2$ = 10 323 gr/in² = 1.03 gr/in² @ 100x

ASTM #8

2048 grains/mm²x(25.4) 2 =1 321 287 gr/in² = 132 gr/in² @ 100x not 128

Applications

Grade	%Mn	Product
1006	0.25-0.4	Sheet
1010-1025	0.3-0.6	Structural
1030	0.6-0.9	Heat treated

13

Low carbon steels (<0.25%C)

- Sheet Steels
- C <0.1%
 - Cold worked quality surfaces (auto's, appliances)
 - Strain Aging
 - · C, N producing inhomogeneous yielding
 - Need for temper rolling to obtain homogeneous yielding (for smooth surface forming)
- Very low carbon IF Steels (<0.05%C)
 - Paint bake strengthening (+70 MPa Y.S.)

Low carbon steels (<0.25%C)

- Structural Steels (<0.15-0.25%C)
- Equilibrium microstructures (25% α +75%P)
- Following hot rolling, use accelerated cooling to decrease γ→ α+P transition temperature (below 721°C)
 - \therefore produce fine α + increases amount of P
- Ferrite grain size ASTM # 5 (coarse) ASTM # 8 (fine)
- Canadian Standards Association (CSA) CSA G40.21 for quality structural steel

15

High Strength Low Alloy (HSLA) steels

Why low alloy if high alloy provides high strength?

- Traditionally for highest strength in a structural steel the C & Mn levels would be increased
 - i.e. 0.25-0.30%C 1.2-1.5%Mn
 - An increase of 1% Mn will increase YS by ~14%
- This led to **problems** with:
 - Weldability (problem with increased C and Mn)
 - Brittle failure (problem with increased C)
- New approach required: strength but LC
- Now have steels with YS to 550 MPa but with excellent weldability and brittle fracture resistance

HSLA steels

- Solid solution hardening (Mn)
- Decrease ferrite grain size by
 - Controlled rolling
 - Controlled cooling
- Precipitation hardening
 - Nb (C,N)
 - VC

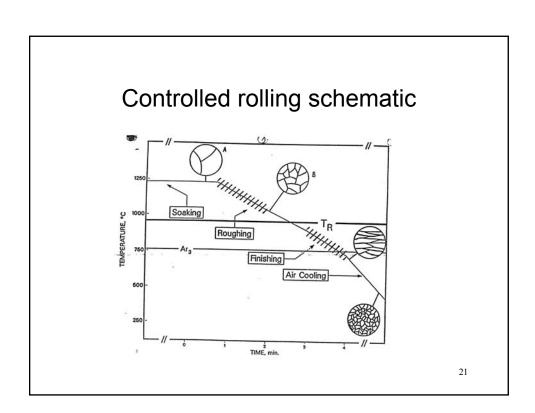
Typical x70 pipeline steel %C = 0.06; %Mn = 1.50; %Nb and/or V ~0.04 Controlled rolling to produce very fine grain size

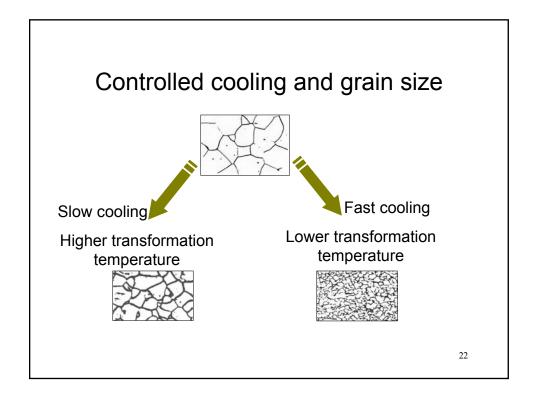
17

Strengthening HSLA steels

- Obtain fine grain size (ASTM 10-13) by:
 - Controlled rolling
 - Controlled cooling
- Can increase yield strength by 100-134 MPa (i.e. 300-440 MPa total)

Element	$\sigma_{\!_{y}}$ increase of α per 1% addition
Cr	6.7
Co	13.4
V	13.4
W	20
Мо	27
Al	40
Ti	67
Ni	80
Mn	94
Si	100
Ве	600
Р	670

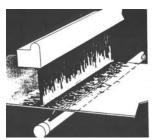

Controlled rolling


- Normal finish T in hot rolling: 900-1000°C
- Finish at temperatures: 750-800°C
 - Lower temperature
 - R_x & grain growth after hot rolling takes longer
 - end up with smaller g grain size\ smaller α grain size

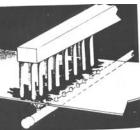
19

Controlled rolling

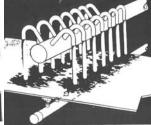
- transformation of **deformed** γ gives finest grain size
- \therefore want to **T** of R_x and make R_x more difficult
 - Nb in small amounts does this (~0.04%Nb added)
 - Need massive roll force to give required deformation
- Controlled rolled plate typically < 1" in thickness
- Thick plate usually has larger α grain size because
 - it is finished at a higher T and \therefore has a larger γ grain size



Controlled cooling


- Now consider cooling rate after rolling
- On increased cooling rate (i.e. H₂0 jets)
 - $-T_{transf}$ is decreased
 - Higher nucleation rate and low grain growth rate
- When external cooling is the same, a thick plate will cool slower
- \therefore larger α grain size

23


Means of controlled cooling

Water-wall strip cooling concept

Dual-jet laminar flow header

Early form of laminar jet flow system – 2 rows of U-tubes from 1 header

Thick sections

Why do "thick" sections have lower yield stress?

- When finish rolling at higher T (larger γ grain size) thick sections cool slower
- raises $T_{transf} \gamma \rightarrow \alpha$
- fewer α nuclei grow to larger α grain size \therefore lower $\sigma_{_{\! V}}$

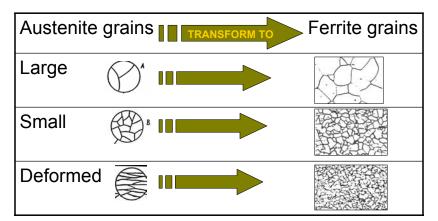
25

Precipitation hardening

Microalloying - Nb, V, Ti

- Nb (C,N) precipitate **during** hot rolling in γ
 - restricts γ grain growth
 - $\boldsymbol{\mathsf{-}}$ refines α grain size
 - retards R_x & raises T_{transf}
- Pancake grains
 - nuclei closer together therefore finer R_x grain size
- V VC precipitate on cooling after rolling

Strength in HSLA steels


+ Standard C-Mn Steel 200-300 MPa + Decrease grain size 100-134 MPa + Increase Mn 67 MPa + Increase Nb, V, Ti ppt hardening 67-100 MPa

Total: 434-600 MPa

- Can now afford to lower the C content and still have 470-500 MPa steel
- Can have any strength level wanted by varying the degree of strengthening components

27

Effect of austenite grain size

