การใช้โปรแกรม MiniTab ในการวิเคราะห์ความแปรปรวนแบบมีปัจจัยเดียว (Completely Randomized Single Factor ANOVA)

รายงานนี้จะแสดงการใช้โปรแกรม MiniTab ช่วยในการวิเคราะห์ ความแปรปรวนแบบ ปัจจัยเดียวหรือตัวแปรเดียวว่ามีผลต่อหน่วยทคลองหรือไม่โคยวิเคราะห์ระดับของปัจจัย (treatment) มากกว่าสองระดับขึ้นไป โดยนำปัญหาในตัวอย่างที่ 2 ของบทที่ 8 จากเอกสารวิชาสถิติ วิสวกรรมมาใช้ ซึ่งปัญหาคือ

<u>ตัวอย่างที่2</u>

ผู้ผลิตกระคาษต้องการทราบว่าความเข้มข้นของไม้เนื้อแข็งมีผลต่อแรงดึง(tensile strength)ของ กระคาษหรือไม่ เขาสนใจศึกษาความเข้มข้นของไม้เนื้อแข็งในช่วงระคับ 5% ถึง 20% เขาจึงเลือก ระคับความเข้มข้นของไม้เนื้อแข็งที่ 5% 10% 15% และ 20% แล้วทำการทคลองกับตัวอย่าง ทั้งหมด 24 ตัวอย่าง และวัคแรงคึงของกระคาษ(หน่วยเป็น psi)ได้คังตารางข้างล่างนี้ ใช้ ANOVA ในการทคสอบว่าความเข้มข้นของไม้เนื้อแข็งมีผลต่อค่าเฉลี่ยของแรงคึง (tensile strength) ของกระคาษหรือไม่ ที่ระคับนัยสำคัญ = 0.01

5	10	15	20
7	12	14	19
8	17	18	25
15	13	19	22
11	18	17	23
9	19	16	18
10	15	18	20

ความเข้มข้นของไม้เนื้อแข็ง (%)

ส่วนนี้ให้นักศึกษาแสดงวิธีการคำนวณ

การใช้โปรแกรม MiniTab ในการวิเคราะห์ความแปรปรวนแบบมีปัจจัยเดียว

 เปิดโปรแกรม Minitab ตั้งชื่อ project ว่า Example ANOVA จากนั้น ให้ป้อนข้อมูลตัวเลขจาก ตัวอย่างข้างต้นลงใน worksheet 1 ดังแสดงในรูปที่ 1 จากนั้นตั้งชื่อ worksheet 1 ว่า paper

MINITAB - Example-ANOVA.MPJ						
Eile Edit Data <u>C</u> alc <u>S</u> tat Graph Editor <u>T</u> ools <u>W</u> indow <u>H</u> elp						
🕞 🖬 🎒 🐰 🖻 🛍 🗠 🗠 📴 🕇 🖡 🗛 🖗 🛇 🎖 🗊 🕂 🗑 🗑 🛈 🚬 🗒 י						
-12 -12						
E Project Manager						
Example-ANOVA.MPJ	🏢 pa	per.MTW ***				
Session	÷	C1	C2	C3	C4	
History		hardwood 5	hardwood 10	hardwood 15	hardwood 20	
Graphs	1	7	12	14	19	
Related Documents	2	8	17	18	25	
🖻 🧰 Worksheets	3	15	13	19	22	
paper.MTW	4	11	18	17	23	
Constants	5	9	19	16	18	
Matrices	6	10	15	18	20	
	7					

รูปที่ 1 ข้อมูลจากตัวอย่างที่ 2 ใน worksheet

2. เลือกคำสั่ง Stat > ANOVA > One-Way (Unstacked)

ในการวิเคราะห์ความแปรปรวนแบบมีปัจจัยเดียว จะมีคำสั่งสองแบบคือ > One-Way และ > One-Way (Unstacked) การเลือกคำสั่งใดขึ้นกับการจัดข้อมูลใน worksheet หากข้อมูลจัดเรียง แบบแยก column ดังแสดงในรูปที่ 1 ให้ผู้ใช้เลือกใช้คำสั่ง > One-Way (Unstacked) ดังแสดงในรูป ที่ 2 แต่หากข้อมูลจัดเรียงในcolumn เดียวกันดังแสดงในรูปที่ 3 ให้เลือกใช้คำสั่ง > One-Way

MINITAB - Example	e-ANOVA.MPJ		
<u>File E</u> dit D <u>a</u> ta <u>C</u> alc	<u>Stat</u> <u>Graph</u> Editor <u>T</u> oo	s <u>W</u> indow <u>H</u> elp	
	<u>B</u> asic Statistics <u>R</u> egression	▶ ₩ & ○ ? ₫ -€ 📾	🗟 🛈 🖻 (
	<u>A</u> NOVA	🕨 🍂 One-Way	
📕 Project Manager	DOE	One-Way (Unstacked)	
Example-ANOVA.MPJ	Control Charts	▶ <u>•</u> wo-Way	
Session	Quality Tools	Analysis of Means	C4
Graphs	Reliability/Survival	<u>A0V</u> <u>B</u> alanced ANOVA	wood 20
ReportPad	Multivariate	<u>GLM</u> <u>G</u> eneral Linear Model	19
Related Document	Time <u>S</u> eries	Eilly Nested ANOVA	25
E paper.MTW	<u>T</u> ables	Relanced MANOVA	22
Columns	Nonparametrics		10
Constants	EDA		20
- Madrices	Power and Sample Size	• • $\sigma_{\sigma_2}^{i=}$ Test for Equal <u>V</u> ariances	20
	8	II Interval Plot	
	9	Main Effects Plot	
	10	Interactions Plot	
I .			

รูปที่ 2 การเลือกคำสั่งเมื่อข้อมูลจัดเรียงแบบแยก column

Anova-example1-2.MTW ***			
Ŧ	C1-T C2		
	%Hardwood	PSI	
1	hardwood 5	7	
2	hardwood 5	8	
3	hardwood 5	15	
4	hardwood 5	11	
5	hardwood 5	9	
6	hardwood 5	10	
7	hardwood10	12	
8	hardwood10	17	
9	hardwood10	13	
10	hardwood10	18	
11	hardwood10	19	
12	hardwood10	15	
13	hardwood15	14	
14	hardwood15	18	
15	hardwood15	19	
16	hardwood15	17	
17	hardwood15	16	
18	hardwood15	18	
19	hardwood20	19	
20	hardwood20	25	
21	hardwood20	22	
22	hardwood20	23	
23	hardwood20	18	
- A 4	hardwaad20	20	

รูปที่ 3 การป้อนข้อมูลตัวแปรใน column เดียว

 เมื่อเลือกคำสั่งแล้ว โปรแกรมจะแสดงกล่องโต้ตอบดังแสดงในรูปที่ 4 เพื่อให้ผู้ใช้ป้อนข้อมูล ตัวแปรตอบสนอง (Responses) และค่าระดับความเชื่อมั่น ในตัวอย่างนี้ ให้ผู้ใช้

D double click ที่ ชื่อ column ทุกชื่อ ทุกครั้งที่ double click ชื่อ column จะปรากฏขึ้นใน ช่อง Responses (in separate columns):

ตัวอย่างนี้โจทย์กำหนดให้วิเคราะห์ที่ระดับนัยสำคัญ = 0.01 นั้นคือระดับความเชื่อมั่น
 = 1-0.01 = 0.99 (99.0%) จึงป้อนข้อมูล Confidence level = 99.0

One-Way A	nalysis of Vari	ance	×
C1 C2 C3 C4	hardwood 5 hardwood 10 hardwood 15 hardwood 20	Responses (in separate columns): 'hardwood 5' 'hardwood 10' 'hardwood 15' 'hardwood 20' Store residuals Store fits 2 Confidence level: 99.0]
Hel	Select P	Comparisons Graphs OK Cancel	

รูปที่ 4 การป้อนข้อมูลตัวแปรตอบสนองและระดับความเชื่อมั่น

4. เมื่อป้อนข้อมูลตอบสนองแล้วให้ **1** click ที่ Graphs และ **2** click ที่ Three in one เพื่อให้ โปรแกรมแสดง กราฟ จากนั้น click OK ที่ **3** และ **4**

One-Way Analysis of Variance	One-Way Analysis of Variance - Graphs
Responses (in separate colu 'hardwood 5' 'hardwood 'hardwood 15' 'hardwood	☐ Individual value plot ☐ Boxplots of data
Confidence level: 99.8	Residual Plots Individual plots Histogram of residuals Normal plot of residuals Residuals versus fits Three in one
Select Comparisons	Graphs Cancel

รูปที่ 5 การเลือกให้โปรแกรมสร้างกราฟ

5. โปรแกรมจะวิเคราะห์และแสดงผลใน window ชื่อ Session ผลที่ได้แสดงในรูปที่ 6 และกราฟที่ ได้แสดงในรูปที่ 7

```
E Session
                                                  (1)
   Results for: paper.MTW
   One-way ANOVA: hardwood 5, hardwood 10, hardwood 15, hardwood 20
                    SS
                             MS
                                     F
                                            P
   Source
            DF
            3 382.79
                       127.60
                                        0.000
   Factor
                                19.61
                                                      (2)
   Error
            20
                130.17
                           6.51
            23 512.96
   Total
   S = 2.551
                R-Sq = 74.62% R-Sq(adj) = 70.82%
                                    Individual 99% CIs For Mean Based on
                                    Pooled StDev
   Level
                 Ν
                      Mean StDev
   hardwood 5
                 6
                    10.000
                            2.828
                                             ----)
                                        --*-
   hardwood 10 6
                    15.667
                            2.805
                                                6-
   hardwood 15 6
                   17.000
                           1.789
   hardwood 20
                    21.167
                            2.639
                 6
                                                           (---
                                                                      --)
                                       10.0
                                                  15.0
                                                                       25.0
                                                            20.0
   Pooled StDev = 2.551
   Residual Plots for hardwood 5, hardwood 10, hardwood 15, hardwood 20
รูปที่ 6 ผลการวิเคราะห์ว่ากวามเข้มข้นของไม้เนื้อแข็งมีผลต่อก่าเฉลี่ยของแรงคึงของกระคาษ
                                     หรือไม่
```

จากรูปที่ 6 สามารถแปลผลได้ดังนี้ ① แสดงตาราง ANOVA ได้ค่า F = 19.61 ซึ่งได้คำตอบตรงกับการคำนวณด้วยมือ ②อ่านค่า P-Value พบว่าได้ค่าน้อยมาก คือ 0.000 < α (0.01) จึงปฏิเสธสมมุติฐานหลัก และสรุป ได้ว่าความเข้มข้นของไม้เนื้อแข็ง มีผลต่อค่าเฉลี่ยของแรงดึงของกระดาษ อย่างมีนัยสำคัญ

รูปที่ 6 กราฟแสดงการวิเคราะห์เศษเหลือ (Residual)

จากกราฟ **O**Normal Probability Plot of the Residuals แสดงเส้นตรง 1 เส้น และ **2** Histogram แสดงรูปทรงระฆังคว่ำ แสดงว่าข้อมูลมาจากการทดลองที่มี setting ค่อนข้างดี

 6. จากผลการวิเคราะห์ สรุปได้ว่าความเข้มข้นของไม้เนื้อแข็ง มีผลต่อค่าเฉลี่ยของแรงดึงของ กระดาษ อย่างมีนัยสำคัญ= 0.01