Fundamental of
 Environmental Engineering

Chapter 2: Units of Concentration

Mass Concentration Units

Volume/Volume and Mole/Mole Units

Partial Pressure Units

Mole/Volume Units

Other Types of Units

1. Mass concentration Units
1.1 Mass/Mass Unit: $\mathrm{ppm}_{\mathrm{m}}, \mathrm{mg} / \mathrm{kg}$

$$
\begin{aligned}
& \mathrm{ppm}_{\mathrm{m}}=\mathrm{g} \text { of i in } 10^{6} \mathrm{~g} \text { total } \\
& \operatorname{ppm}_{\mathrm{m}}=\frac{\mathrm{m}_{\mathrm{i}}}{\mathrm{~m}_{\text {total }}} \times 10^{6} \\
& \frac{\mathrm{~m}_{\mathrm{i}}}{\mathrm{~m}_{\text {toal }}}=\text { mass fraction }
\end{aligned}
$$

Similar definitions: $\mathrm{ppb}_{\mathrm{m}}$ (part per billion), $\mathrm{ppt}_{\mathrm{m}}$ (part per trillion)

Ex. 1 A one-kg sample of soil contains 5 mg of trichloroethylene (TCE). What is the TCE concentration in $\mathrm{ppm}_{\mathrm{m}}$ and $\mathrm{ppb}_{\mathrm{m}}$?

Solution

$$
[\mathrm{TCE}]=\frac{5 \mathrm{mgTCE}}{1 \mathrm{kgSoil}}=\frac{5 \times 10^{-3} \mathrm{gTCE}}{10^{3} \mathrm{gSoil}}=5 \mathrm{ppm}_{\mathrm{m}}=5,000 \mathrm{ppb}_{\mathrm{m}}
$$

1.2 Mass/Volume Unit: $\mathrm{mg} / \mathrm{L}, \mu \mathrm{g} / \mathrm{L}, \mathrm{mg} / \mathrm{m}^{3}$, and $\mu \mathrm{g} / \mathrm{m}^{3}$

In most aqueous systems, $\mathrm{ppm}_{\mathrm{m}}$ is equivalent to mg / L because the density of pure water is approximately $1,000 \mathrm{~g} / \mathrm{L}$.

Ex. 2 One liter of water contains 5 mg of trichloroethylene (TCE). What is the TCE concentration in mg / L and $\mathrm{ppm}_{\mathrm{m}}$?

Solution

$$
\begin{aligned}
& {[\mathrm{TCE}]=\frac{5 \mathrm{mgTCE}}{1 \mathrm{LH}_{2} \mathrm{O}}=\frac{5 \mathrm{mg}}{\mathrm{~L}}} \\
& {[\text { TCE }]=\frac{5 \mathrm{mgTCE}}{1 \mathrm{LH}_{2} \mathrm{O}} \times \frac{1 \mathrm{LH}_{2} \mathrm{O}}{1,000 \mathrm{gH}_{2} \mathrm{O}}=\frac{5 \times 10^{-3} \mathrm{gTCE}}{10^{3} \mathrm{gH}_{2} \mathrm{O}}=5 \mathrm{ppm}_{\mathrm{m}}}
\end{aligned}
$$

2. Volume/Volume and Mole/Mole Units

Units of volume fraction or mole fraction are frequently used for gas concentrations: $\mathrm{ppm}_{\mathrm{v}}$ (part per million by volume)

$$
\begin{aligned}
\operatorname{ppm}_{\mathrm{v}} & =\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~V}_{\text {total }}} \times 10^{6} \\
\frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}_{\text {total }}} & =\text { volume fraction }
\end{aligned}
$$

The advantage of volume/volume units is that gaseous concentrations reported in these units do not change as a gas is compressed or expanded.
2.1 Using the Ideal Gas Law to Convert ppm v_{v} to $\mu \mathrm{g} / \mathrm{m}^{3}$

Ideal Gas Law:

$$
\mathrm{PV}=\mathrm{nRT}
$$

where $P=$ the pressure
$\mathrm{V}=$ the volume occupied
$\mathrm{n}=$ the number of moles
$R=$ the gas constant
$\mathrm{T}=$ the absolute temperature

Homework: The gas constant, R, may be expressed in many different sets of units. Show at least 4 of them?

Solution

Such as

$$
\mathrm{R}=8.205 \times 10^{-5} \frac{\mathrm{~m}^{3} \cdot \mathrm{~atm}}{\mathrm{~mole} \cdot \mathrm{~K}}
$$

The Ideal Gas Law states that "the volume

 occupied by a given number of molecules of any gas is the same, no matter what the molecular weight or composition of the gas, as long as the pressure and temperature are constant":$$
\mathrm{V}=\mathrm{n} \frac{\mathrm{RT}}{\mathrm{P}}
$$

Therefore, at standard conitions ($\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=$ $273.15^{\circ} \mathrm{C}$), one mole of any pure gas will occupy a volume of 22.4 L .

Ex. 3 A gas mixture contains 0.001 mole of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and 0.999 mole of air. What is the SO_{2} concentration, expressed in units of $\mathrm{ppm}_{\mathrm{v}}$?
Solution

$$
\begin{aligned}
& {\left[\mathrm{SO}_{2}\right]=\frac{\mathrm{V}_{\mathrm{SO}_{2}}}{\mathrm{~V}_{\text {total }}} \times 10^{6}} \\
& \mathrm{~V}_{\mathrm{SO}_{2}}=0.001 \mathrm{moleSO}_{2} \times \frac{\mathrm{RT}}{\mathrm{P}} \\
& \mathrm{~V}_{\text {total }}=(0.999+0.001) \text { mole total } \times \frac{\mathrm{RT}}{\mathrm{P}} \\
& \therefore\left[\mathrm{SO}_{2}\right]=\frac{0.001 \mathrm{moleSO}_{2} \times \frac{\mathrm{RT}}{\mathrm{P}}}{(0.999+0.001) \text { mole total } \times \frac{\mathrm{RT}}{\mathrm{P}}} \times 10^{6}=1,000 \mathrm{ppm}_{\mathrm{v}} \\
& \text { or } \\
& {\left[\mathrm{SO}_{2}\right]=\frac{\text { mole }_{\mathrm{SO}_{2}}}{\mathrm{~mole}_{\text {toal }}} \times 10^{6}=\frac{0.001 \mathrm{moleSO}_{2}}{(0.999+0.001) \mathrm{mole} \mathrm{total}} \times 10^{6}=1,000 \mathrm{ppm}_{\mathrm{v}}}
\end{aligned}
$$

From Ex.3, it can be seen that:

$$
\operatorname{ppm}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~V}_{\text {total }}} \times 10^{6}=\frac{\text { mole }_{\mathrm{i}}}{\mathrm{~mole}_{\text {total }}} \times 10^{6}
$$

Ex. 4 The SO_{2} concentration is $100 \mathrm{ppb}_{\mathrm{v}}$. What is the concentration in the unit of $\mu \mathrm{g} / \mathrm{m}^{3}$?
Assume the temperature is $28^{\circ} \mathrm{C}$ and pressure is 1 atm .

Solution

$100 \mathrm{ppb}_{\mathrm{v}}=\frac{100 \mathrm{~m}^{3} \mathrm{SO}_{2}}{10^{9} \mathrm{~m}^{3} \text { Air }}$
First, convert the volume of SO_{2} to a number of mole

$$
\begin{aligned}
& \frac{100 \mathrm{~m}^{3} \mathrm{SO}_{2} \times \frac{\mathrm{P}}{\mathrm{RT}}}{10^{9} \mathrm{~m}^{3} \mathrm{Air}}=\frac{100 \mathrm{~m}^{3} \mathrm{SO}_{2} \times \frac{1 \mathrm{~atm}}{\left(8.205 \times 10^{-5} \frac{\mathrm{~m}^{3} \cdot \mathrm{~atm}}{\mathrm{~mole} \cdot \mathrm{~K}}\right)(301 \mathrm{~K})}}{10^{9} \mathrm{~m}^{3} \mathrm{Air}}=\frac{4.05 \times 10^{-6} \mathrm{moleSO}_{2}}{\mathrm{~m}^{3} \mathrm{Air}} \\
& \text { Then, convert the moles of } \mathrm{SO}_{2} \text { to mass } \\
& =\frac{4.05 \times 10^{-6} \mathrm{moleSO}_{2}}{\mathrm{~m}^{3} \mathrm{Air}} \times \frac{64 \mathrm{gSO}_{2}}{\mathrm{moleSO}_{2}} \times \frac{10^{6} \mu \mathrm{~g}}{\mathrm{~g}}=\frac{260 \mu \mathrm{~g}}{\mathrm{~m}^{3}}
\end{aligned}
$$

3. Partial-Pressure Units

From the Ideal Gas Law, at the given temperature and volume, pressure is directly proportional to the number of moles of gas present; therefore, pressure fractions are identical to mole fractions (and volume fractions). For this reason, partial pressure $\left(\mathrm{P}_{\mathrm{i}}\right)$ can be calculated as the product of the mole or volume fraction and the total pressure as shown:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}=(\text { volume fraction or mole fraction }) \times \mathrm{P}_{\text {total }} \\
&=\left(\operatorname{ppm}_{\mathrm{v}} \times 10^{-6}\right) \times \mathrm{P}_{\text {total }} \\
& \operatorname{ppm}_{\mathrm{v}}=\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\text {total }}} \times 10^{-6}
\end{aligned}
$$

So far, we know:
$\operatorname{ppm}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{V}_{\text {total }}} \times 10^{6}=\frac{\text { mole }_{\mathrm{i}}}{\text { mole }_{\text {total }}} \times 10^{6}=\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\text {total }}} \times 10^{6}$

Ex. 5 The concentration of gas-phase polychlorinated biphenyls (PCBs) above Lake Superior is 450 picograms per cubic meter $\left(\mathrm{pg} / \mathrm{m}^{3}\right)$. What is the partial pressure (in atm) of PCBs? Assume the temperature is $0^{\circ} \mathrm{C}$, the atmospheric pressure is 1 atm , and the average molecular weight of PCBs is 325 .

Solution

First, find the number of moles of PCBs in a liter of air.
$450 \frac{\mathrm{pg}}{\mathrm{m}^{3} \text { air }} \times \frac{\mathrm{mole}}{325 \mathrm{~g}} \times 10^{-12} \frac{\mathrm{~g}}{\mathrm{pg}} \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~L}}=1.38 \times 10^{-15} \frac{\mathrm{~mole} \mathrm{PCBs}}{\mathrm{L} \text { air }}$
Then, find mole fraction using the ideal gas law
$1.38 \times 10^{-15} \frac{\mathrm{~mole} \mathrm{PCBs}}{\mathrm{L} \text { air }} \times \frac{22.4 \mathrm{~L} \text { air }}{\text { mole air }}=3.1 \times 10^{-14} \frac{\mathrm{~mole} \text { PCBs }}{\text { mole air }}$
Find the partial pressure
$P_{\text {PCBs }}=3.1 \times 10^{-14} \times 1 \mathrm{~atm}=3.1 \times 10^{-14} \mathrm{~atm}$

Table 2-2. Composition of the Atmosphere*

Compound	Concentration (\% volume or moles)	Concentration $\left(\mathrm{ppm}_{\mathrm{v}}\right)$
Nitrogen $\left(\mathrm{N}_{2}\right)$	78.1	781,000
Oxygen $\left(\mathrm{O}_{2}\right)$	20.9	209,000
Argon $(\mathrm{Ar)}$	0.93	9,300
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$	0.035	350
Neon (Ne)	0.0018	18
Helium (He)	0.0005	5
Methane $\left(\mathrm{CH}_{4}\right)$	0.00017	1.7
Krypton $(\mathrm{Kr)}$	0.00011	1.1
Hydrogen $\left(\mathrm{H}_{2}\right)$	0.00005	0.500
Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$	0.000032	0.316
Ozone $\left(\mathrm{O}_{3}\right)$	0.000002	0.020

Data from Graedel and Crutzen, 1993.
*Values represent concentrations in dry air at remote locations.

3.1 Corrected Partial-Pressure for Moisture

Ex. 6 What would be the partial pressure (in atm) of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ when the barometer reads 101.325 kPa , the relative humidity is 80%, and the temperature is $20^{\circ} \mathrm{C}$? The concentration of CO_{2} in dry air is $350 \mathrm{ppm}_{\mathrm{v}}$.

Solution

The total pressure must first be corrected for the moisture present in the air.
$\mathrm{P}_{\text {total }}-\mathrm{P}_{\text {water }}=101.325-2.34 \times 0.8=99.453 \mathrm{kPa}$
The partial pressure of CO_{2} would be
$\mathrm{P}_{\mathrm{CO}_{2}}=$ volume fraction \times corrected $\mathrm{P}_{\text {total }}$
$=350 \mathrm{ppm}_{\mathrm{v}} \times \frac{10^{-6} \text { volume fraction }}{\mathrm{ppm}_{\mathrm{v}}} \times\left[99.453 \mathrm{kPa} \times \frac{1 \mathrm{~atm}}{101.325 \mathrm{kPa}}\right]=3.4 \times 10^{-4} \mathrm{~atm}$
table C-2
Physical properties of water (SI units) ${ }^{\text {a }}$

Temperature, ${ }^{\circ} \mathrm{C}$	Specific weight, γ, $\mathrm{kN} / \mathrm{m}^{3}$		```Modulus of elasticity,b E/106, kN/m```	Dynamic viscosity, $\begin{aligned} & \mu \times 10^{3}, \\ & \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \end{aligned}$	Kinematic viscosity, $\begin{gathered} \nu \times 10^{6}, \\ \mathrm{~m}^{2} / \mathrm{s} \end{gathered}$	Surface tension, ${ }^{\text {c }}$ σ, N / m	Vapor pressure, p_{v}, $\mathrm{kN} / \mathrm{m}^{2}$
0	9.805	999.8	1.98	1.781	1.785	0.0765	0.61
5	9.805 9.807	1000.0	2.05	1.518	1.519	0.0749	0.87
10	9.804	999.7	2.10	1.307	1.306	0.0742	1.23 1.70
15	9.798	999.1	2.15	1.139	1.139	0.0735	2.34
20	9.789	998.2	2.17	1.002	1.003	0.0728	3.17
25	9.777	997.0	2.22	0.890	0.893	0.072	4.24
30	9.764	995.7	2.25	0.798	0.800	0.0696	7.38
40	9.730	992.2	2.28	0.653	0.658	0.0696 0.0679	12.33
50	9.689	988.0	2.29	0.547	0.553	0.0662	19.92
60	9.642	983.2	2.28	0.466	0.474 0.413	0.0662 0.0644	31.16
70	9.589	977.8	2.25	0.404	0.413 0.364	0.0626	47.34
80	9.530	971.8	2.20	0.354	0.364	0.0608	70.10
90	9.466	965.3	2.14	0.315	0.326 0.294	0.0589	101.33
100	9.399	958.4	2.07	0.282	0.294	0.0589	

* Adapted from Ref. 2.
${ }^{\circ}$ At atmospheric pressure.
${ }^{c}$ In contact with air.

Relative humidity - the ratio of the amount of water in the air at a give temperature to the maximum amount it could hold at that temperature; expressed as a percentage

Water vapor - water in a vaporous form diffused in the atmosphere but below boiling temperature

Vapor pressure - the pressure exerted by a vapor; often understood to mean saturated vapor pressure (the vapor pressure of a vapor in contact with its liquid form)

Viscosity - A property of a fluid that characterizes its perceived "thickness" or resistance to pouring. It describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, methanol is thin, having a low viscosity, while vegetable oil is thick having a high viscosity.

Modulus of elasticity - (physics) the ratio of the applied stress to the change in shape of an elastic body
4. Mole/Volume Units

Molarity (M) (the unit called "molar") : the number of moles of a solute per one liter of solution.

Don't be confused with molality (m) (the unit called "molal") : the number of moles of a solute added to exactly one liter of solvent.

Ex. 7 The concentration of trichloroethene (TCE) is 5 mg / L. What is the concentration of TCE in units of molarity? The molecular weight of TCE is 131.5 g/mole.

Solution

$$
\frac{5 \mathrm{mgTCE}}{\mathrm{~L}} \times \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \times \frac{1 \mathrm{~mole}}{131.5 \mathrm{~g}}=3.8 \times 10^{-5} \mathrm{M}
$$

5. Other Types of Units

5.1 Normality (N , equivalents/L):

Mostly used in acid/base or oxidation/reduction reactions
"Reporting concentration on an equivalent basis is useful because if two chemical species react and the two species reacting have the same strength on an equivalent basis, a 1-mL volume of reactant number 1 will react with a $1-\mathrm{mL}$ volume of reactant number 2 ".

For example, $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ have 1, 2 and 3 equivalents $/$ mole of H^{+}that the acid can potentially donate, respectively.

Ex. 8 What is the equivalent weight of $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{NaOH}, \mathrm{CaCO}_{3}$, and aqueous CO_{2} ?

Solution

The equivalent weight is found by dividing the molecular weight by the number of equivalents.
eqv wt of $\mathrm{HCl}=\frac{1+35.5 \mathrm{~g}}{\mathrm{~mole}} \div \frac{1 \mathrm{eqv}}{\mathrm{mole}}=\frac{36.5 \mathrm{~g}}{\mathrm{eqv}}$
eqv wt of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{(2 \times 1)+32+(4 \times 16) \mathrm{g}}{\mathrm{mole}} \div \frac{2 \text { eqv }}{\mathrm{mole}}=\frac{49 \mathrm{~g}}{\text { eqv }}$
eqv wt of $\mathrm{NaOH}=\frac{23+16+1 \mathrm{~g}}{\text { mole }} \div \frac{1 \mathrm{eqv}}{\text { mole }}=\frac{40 \mathrm{~g}}{\text { eqv }}$
eqv wt of $\mathrm{CaCO}_{3}=\frac{40+12+(3 \times 16) \mathrm{g}}{\text { mole }} \div \frac{2 \text { eqv }}{\mathrm{mole}}=\frac{50 \mathrm{~g}}{\mathrm{eqv}}$
Aqueous carbon dioxide is not an acid until it hydrates in water and forms carbonic acid
$\left(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\right)=\frac{12+(2 \times 16) \mathrm{g}}{\text { mole }} \div \frac{2 \mathrm{eqv}}{\text { mole }}=\frac{22 \mathrm{~g}}{\text { eqv }}$

Ex. 8 What is the normality of 1 M solutions of HCl , and $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Solution

$$
\begin{aligned}
& 1 \mathrm{M} \mathrm{HCl}=\frac{1 \mathrm{moleHCl}}{\mathrm{~L}} \times \frac{1 \mathrm{eqv}}{\mathrm{~mole}}=\frac{1 \mathrm{eqv}}{\mathrm{~L}}=1 \mathrm{~N} \\
& 1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{1 \mathrm{moleH}_{2} \mathrm{SO}_{4}}{\mathrm{~L}} \times \frac{2 \mathrm{eqv}}{\mathrm{~mole}}=\frac{2 \mathrm{eqv}}{\mathrm{~L}}=2 \mathrm{~N}
\end{aligned}
$$

Note that on an equivalent basis, a 1-M solution of sulfuric acid is twice as strong as a $1-\mathrm{M}$ solution of HCl .

Homework: A chemical analysis of the mineral water resulted in the following cations and anions being identified with corresponding concentrations (mg / L): $\left[\mathrm{Ca}^{2+}\right]=2.9 ;\left[\mathrm{Mg}^{2+}\right]=2.0 ;\left[\mathrm{Na}^{+}\right]=11.5 ;\left[\mathrm{K}^{+}\right]=3.3 ;$ $\left[\mathrm{HCO}_{3}{ }^{-}\right]=40 ;\left[\mathrm{SO}_{4}{ }^{2}\right]=4.7 ;[\mathrm{F}]=0.09 ;\left[\mathrm{Cl}^{-}\right]=7.7$

Is the analysis correct? Hint: All aqueous solutions must maintain charge neutrality

5.2 Concentration as a Common Constituent

EXAMPLE 2.13. CONCENTRATIONS AS A COMMON CONSTITUENT

A water contains two nitrogen species. The concentration of NH_{3} is $30 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{3}$ and the concentration of NO_{3}^{-}is $5 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}^{-}$. What is the total nitrogen concentration in units of $\mathrm{mg} \mathrm{N} / \mathrm{L}$?

SOLUTION
Use the appropriate molecular weight and stoichiometry to convert each individual species to the requested units of $\mathrm{mg} \mathrm{N} / \mathrm{L}$, then add the contribution of each species.

$$
\begin{aligned}
& \frac{30 \mathrm{mg} \mathrm{NH}_{3}}{\mathrm{~L}} \times \frac{\text { mole NH}}{3} \\
& 17 \mathrm{~g}
\end{aligned} \frac{\text { mole N}}{\text { mole } \mathrm{NH}_{3}} \times \frac{14 \mathrm{~g}}{\text { mole N}}=\frac{24.7 \mathrm{mg} \mathrm{NH}_{3}-\mathrm{N}}{\mathrm{~L}}, ~\left(\frac{5 \mathrm{mg} \mathrm{NO}_{3}^{-}}{\mathrm{L}} \times \frac{\mathrm{mole} \mathrm{NO}_{3}^{-}}{62 \mathrm{~g}} \times \frac{\text { mole N}}{\text { mole NO}} 3\right.
$$

EXAMPLE 2.14. DETERMINATION OF A WATER'S HARDNESS

Water has the following chemical composition. $\left[\mathrm{Ca}^{2+}\right]=15 \mathrm{mg} / \mathrm{L} ;\left[\mathrm{Mg}^{2+}\right]=10$ $\mathrm{mg} / \mathrm{L} ;\left[\mathrm{SO}_{4}^{2-}\right]=30 \mathrm{mg} / \mathrm{L}$. What is the total hardness in units of mg / L as CaCO_{3} ?

SOLUTION

Find the contribution of hardness from each divalent cation. Anions and all nondivalent cations are not included in the calculation.

$$
\begin{aligned}
& \frac{15 \mathrm{mg} \mathrm{Ca}^{2+}}{\mathrm{L}} \times\left(\frac{\frac{50 \mathrm{~g} \mathrm{CaCO}_{3}}{\mathrm{eqv}}}{\frac{40 \mathrm{~g} \mathrm{Ca}^{2+}}{2 \mathrm{eqv}}}\right)=\frac{38 \mathrm{mg}}{\mathrm{~L}} \text { as } \mathrm{CaCO}_{3} \\
& \frac{10 \mathrm{mg} \mathrm{Mg}^{2+}}{\mathrm{L}} \times\left(\frac{\frac{50 \mathrm{~g} \mathrm{CaCO}_{3}}{\mathrm{eqv}}}{\frac{24 \mathrm{~g} \mathrm{Mg}^{2+}}{2 \text { eqv }}}\right)=\frac{42 \mathrm{mg}}{\mathrm{~L}} \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

Therefore, the total hardness is $38+42=80 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}. Note this water is moderately hard. Also, note that if reduced iron $\left(\mathrm{Fe}^{2+}\right)$ or manganese $\left(\mathrm{Mn}^{2+}\right)$ were present, they would be included in the hardness calculation.

Table 2-4. Range of Concentrations Encountered in Natural Waters

Substance	Rain, Fog	Lakes, Rivers	Groundwater	Oceans
Trace metals (e.g., Pb, $\mathrm{Cu}, \mathrm{Hg}, \mathrm{Zn})$	$0.01-100 \mu \mathrm{~g} / \mathrm{L}$	$0.001-10 \mu \mathrm{~g} / \mathrm{L}$	$0.1-10^{6} \mathrm{ng} / \mathrm{L}$	$0.01-100 \mathrm{ng} / \mathrm{L}$
Organic pollutants (e.g., PCBs, pesticides, solvents) $1-5,000 \mathrm{ng} / \mathrm{L}$	$0.1-500 \mathrm{ng} / \mathrm{L}$	$0.001-10^{6} \mathrm{ng} / \mathrm{L}$	$0.001-10 \mathrm{pg} / \mathrm{L}$	
Major ions				
Ca^{2+}	$0.1-20 \mathrm{mg} / \mathrm{L}$	$1-120 \mathrm{mg} / \mathrm{L}$	$1-120 \mathrm{mg} / \mathrm{L}$	$800 \mathrm{mg} / \mathrm{L}$
Cl^{-}	$0.05-10 \mathrm{mg} / \mathrm{L}$	$0.1-30 \mathrm{mg} / \mathrm{L}$	$0.1-50 \mathrm{mg} / \mathrm{L}$	$35,000 \mathrm{mg} / \mathrm{L}$

Table 2-5. Arsenic Concentrations in Southern California's Central and West Basin Groundwater Supplies

Groundwater Basin	Number Wells Tested	Number of Wells with Arsenic, Four Ranges			
	$<0.5 \mu \mathrm{~g} / \mathrm{L}$	$0.5-1.9 \mu \mathrm{~g} / \mathrm{L}$	$2-5 \mu \mathrm{~g} / \mathrm{L}$	$>5 \mu \mathrm{~g} / \mathrm{L}$	
Central	227	13	58	119	37
West	35	14	19	1	1

Adapted from Ried, 1994.

Table 2-6. Dry Weather Leachate Concentration from the Goff Mountain Landfill, West Virginia

Parameter	Range $(\mathrm{mg} / \mathrm{L})$	Average $(\mathrm{mg} / \mathrm{L})$
Chemical oxygen demand (COD)	$4,500-8,310$	7,090
Total organic carbon (TOC)	$169-2,820$	1,270
Total suspended solids (TSS)	$130-189$	160
Volatile suspended solids (VSS)	$108-149$	120
$\mathrm{NH}_{3}-\mathrm{N}$	-	296
$\mathrm{PO}_{4}^{3-}-\mathrm{P}$	-	Below analytical detection
${\mathrm{Alkalinity}\left(\text { as } \mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}\right)} \quad-$	1,420	
Adapted from Campbell et al., 1995.		

