Chapter 5 Stereochemistry: Chiral Molecules

- Isomerism: Constitutional Isomers and Stereoisomers
- Stereoisomers are isomers with the same molecular formula and same connectivity of atoms but different arrangement of atoms in space

SUBDIVISION OF ISOMERS
ISOMERS
(Different compounds with
same molecular formula)

Constitutional isomers
(Isomers whose atoms have a
different connectivity)

Stereoisomers
(Isomers that have the same connectivity but that differ in the arrangement of their atoms in space)

Enantiomers
(Stereoisomers that are nonsuperposable mirror images of each other)
(Stereoisomers that are not mirror images of each other)

- Enantiomers: stereoisomers whose molecules are nonsuperposable mirror images
- Diastereomers: stereoisomers whose molecules are not mirror images of each other
\rightarrow Example: cis and trans double bond isomers

$\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}\right)$

trans-1,2-Dichloroethene
$\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}\right)$
\rightarrow Example: cis and trans cycloalkane isomers

trans-1,2-Dimethylcyclopentane
(C, H_{14})
- Enantiomers and Chiral Molecules
\rightarrow Chiral molecule
i Not superposable on its mirror image
p Can exist as a pair of enantiomers
\rightarrow Pair of enantiomers
\& A chiral molecule and its mirror image
\rightarrow Achiral molecule
\& Superposable on its mirror image

\rightarrow Chiral molecule

P A molecule with a single tetrahedral carbon bonded to four different groups will always be chiral
i A molecule with more than one tetrahedral carbon bonded to four different groups is not always chiral
P Switching two groups at the tetrahedral center leads to the enantiomeric molecule in a molecule with one tetrahedral carbon

\rightarrow Stereogenic center

p An atom bearing groups of such nature that an interchange of any two groups will produce a stereoisomer
\& Carbons at a tetrahedral stereogenic center are designated with an asterisk (*)
\rightarrow Example: 2-butanol
(hydrogen)
(methyl)

(ethyl)
(hydroxyl)

- The Biological Importance of Chirality
\rightarrow The binding specificity of a chiral receptor site for a chiral molecule is usually only favorable in one way

- Tests for Chirality: Planes of Symmetry
\rightarrow Plane of symmetry
\& An imaginary plane that bisects a molecule in such a way that the two halves of the molecule are mirror images of each other
P A molecule with a plane of symmetry cannot be chiral
\rightarrow Example
\& 2-Chloropropane (a) has a plane of symmetry but 2-chlorobutane (b) does not

- Nomenclature of Enantiomers: The R,S System

- Also called the Cahn-Ingold-Prelog system
- The four groups attached to the stereogenic carbon are assigned priorities from highest (a) to lowest (d)
- Priorities are assigned as follows
p Atoms directly attached to the stereogenic center are compared
P Atoms with higher atomic number are given higher priority
\rightarrow If priority cannot be assigned based on directly attached atoms, the next layer of atoms is examined
\rightarrow Example

- The molecule is rotated to put the lowest priority group back
\rightarrow If the groups descend in priority (a, b then c) in clockwise direction the enantiomer is R
\rightarrow If the groups descend in priority in counterclockwise direction the enantiomer is S

- Groups with double or triple bonds are assigned priorities as if their atoms were duplicated or triplicated

- Problem: Are A and B identical or enantiomers?

\rightarrow Manipulate B to see if it will become superposable with A

\rightarrow Exchange 2 groups to try to convert B into A
p One exchange of groups leads to the enantiomer of B
P Two exchanges of groups leads back to B

- Properties of Enantiomers: Optical Activity

- Enantiomers have almost all identical physical properties (melting point, boiling point, density)
- However enantiomers rotate the plane of plane-polarized light in equal but opposite directions
- Plane polarized light
\rightarrow Oscillation of the electric field of ordinary light occurs in all possible planes perpendicular to the direction of propagation

\rightarrow If the light is passed through a polarizer only one plane emerges

- The Polarimeter

- Specific Rotation

\rightarrow An empty sample tube or one containing an achiral molecule will not rotate the plane-polarized light
\rightarrow An optically active substance (e.g. one pure enantiomer) will rotate the plane-polarized light
i The amount the analyzer needs to be turned to permit light through is called the observed rotation α
The standard value specific rotation [α] can be calculated
\& If the analyzer is rotated clockwise the rotation is (+) and the molecule is dextrorotatory
P If the analyzer is rotated counterclockwise the rotation is (-) and the molecule is levorotatory

$$
[\alpha]=\frac{\alpha}{c \cdot l}
$$

where $\quad[\alpha]=$ the specific rotation
$\alpha=$ the observed rotation
$c=$ the concentration of the solution in grams per milliliter of solution (or density in $\mathrm{g} \mathrm{mL}^{-1}$ for neat liquids)
$l=$ the length of the tube in decimeters $(1 \mathrm{dm}=10 \mathrm{~cm})$

- The specific rotation of the two pure enantiomers of 2butanol are equal but opposite

(R)-2-Butanol
$[\alpha]_{0}^{25}=-13.52^{\circ}$

(S)-2-Butanol
$[\alpha]_{0}^{25}=+13.52^{\circ}$
- There is no straightforward correlation between the R, S designation of an enantiomer and the direction [(+) or $(-)$]in which it rotates plane polarized light
- Racemic mixture
\rightarrow A 1:1 mixture of enantiomers
\rightarrow No net optical rotation
\rightarrow Often designated as (\pm)

$$
(\pm) \text {-2-butanol } \quad \text { or as } \quad(\pm)-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}
$$

- Racemic Forms and Enantiomeric Excess
- Often a mixture of enantiomers will be enriched in one enantiomer
\rightarrow One can measure the enantiomeric excess (ee)
$\%$ Enantiomeric excess $=\frac{\text { moles of one enantiomer }- \text { moles of other enantiomer }}{\text { total moles of both enantiomers }} \times 100$
$\%$ Enantiomeric excess* $=\frac{\text { observed specific rotation }}{\text { specific rotation of the pure enantiomer }} \times 100$
- Example : The optical rotation of a sample of 2-butanol is $\mathbf{+ 6 . 7 6}{ }^{\circ}$. What is the enantiomeric excess?

$$
\text { Enantiomeric excess }=\frac{+6.76^{\circ}}{+13.52^{\circ}} \times 100=50 \%
$$

- The Synthesis of Chiral Molecules
- Most chemical reactions which produce chiral molecules produce them in racemic form

- Molecules with More than One Stereogenic

 Center- The maximum number of stereoisomers available will not exceed 2^{n}, where n is equal to the number of tetrahedral stereogenic centers

1

2

3

4
- There are two pairs of enantiomers $(1,2)$ and $(3,4)$
\rightarrow Enantiomers are not easily separable so 1 and 2 cannot be separated from each other
- Diastereomers: stereoisomers which are not mirror images of each other
\rightarrow For instance 1 and 3 or 1 and 4
\rightarrow Have different physical properties and can be separated

- Meso Compounds

- Sometimes molecules with 2 or more stereogenic centers will have less than the maximum amount of stereoisomers

- Meso compound: achiral despite the presence of stereogenic centers
\rightarrow Not optically active
\rightarrow Superposable on its mirror image
\rightarrow Has a plane of symmetry

- Naming Compounds with More than One Stereogenic Center

- The molecule is manipulated to allow assignment of each stereogenic center separately
β This compound is $(2 R, 3 R)$-2,3-dibromobutane

- Fischer Projection Formulas

- A 2-dimensional representation of chiral molecules
\rightarrow Vertical lines represent bonds that project behind the plane of the paper
\rightarrow Horizontal lines represent bonds that project out of the plane of the paper

Not the same
(Flipping the projection
formula over end for end
for the enantiomer of A)

- Stereoisomerism of Cyclic Compounds

- 1,4-dimethylcyclohexane
\rightarrow Neither the cis not trans isomers is optically active
\rightarrow Each has a plane of symmetry

Chapter 5

- 1,3-dimethylcyclohexane
\rightarrow The trans and cis compounds each have two stereogenic centers
\rightarrow The cis compound has a plane of symmetry and is meso
\rightarrow The trans compound exists as a pair of enantiomers

(a)

(b)

symmetry)
(c)
- Relating Configurations through Reactions in which No Bonds to the Stereogenic Carbon are Broken
\rightarrow A reaction which takes place in a way that no bonds to the stereogenic carbon are broken is said to proceed with retention of configuration

- Relative configuration: the relationship between comparable stereogenic centers in two different molecules
$\rightarrow(R)$-1-Bromo-2-butanol and (S)-2-butanol have the same relative configuration
- Absolute configuration: the actual 3-dimensional orientation of the atoms in a chiral molecule
\rightarrow Can be determined by x-ray crystallography

- Chiral Molecules that Do Not Possess a

 Tetrahedral Atom with Four Different Groups- Atropoisomer: conformational isomers that are stable

(S) -BINAP

(R)-BINAP
- Allenes: contain two consecutive double bonds

