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First Order Equations
The I-factor equation: integrating factor 
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If there exists an elementary, separable 
solution, we can rewrite: 
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The solution can be obtained by direct 
integration:
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where C is an arbitrary constant of integration.

To prove this solution exists, we need to 
specify I(x). 
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Exact Solutions 
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Occasionally, a solution exists which is an 
exact differential

How do we use this information to find y as 
a function x?
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Using the property of continuous functions, 
we specify
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Example

Solve the equation
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First, we integrate Eq. 1with respect to x 
(holding y constant)

)y(fx2yx 22 ++=ϕ Eq. 3

Next, we insert Eq. 3 into Eq. 2
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Finally, adding Eq. 4 into Eq. 3 yields
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Since Eq. 0 integrates to yield φ = C1, then φ
also equals to some arbitary constant. 
Combining C1 and C2 into another arbitrary 
constant yields
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Equations Composed of Homogeneous 
Functions 
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The first order equation

is said to be homogeneous if P and Q are both 
homogeneous of the same degree n, for some 
constant n (including zero).

This implies that first order equations composed 
of homogeneous functions can always be 
arranged in the form



Example

The nonlinear equation
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Separation of variables yields
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Bernoulli’s Equation

The Bernoulli equation 
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is similar to the first order I-factor equation, 
expect for the nonliear term on the right-hand 
side, yn. If we divide yn throughout, we can 
obtain
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For the first term, we can show that

methodfactor -I  theusing solvedeasily  is which
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Riccati’s Equation

The Riccati’s equation
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A nonlinear equation which arises in both 
continuous and staged processes. 

A frequently occurring special form is the case 
when P(x) = -1, then we get
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A change of variables given by
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Inserting these into Eq. 5 eliminates the 
nonlinear term
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which is a linear second order equation with 
nonconstant coefficients. This may be solved 
and discussed later. 



Example

A constant-volume batch reactor undergoes 
the series reaction sequence

CBA 21 kk ⎯→⎯⎯→⎯

The initial concentration of A is denoted by CAO, 
whereas B and C are initially nil. The reaction rates 
per unit reactor volume are described by
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Case (a) n =1, m=2
The material balances are written as
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If we make the Riccati transformation
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We have thus transformed a nonlinear first order 
equation to a solvable, linear second order equation



Case (b) n =2, m=1
The simultaneous equations for this case are
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Inserting C  yields the classic inhomogeneous (I-factor) equation
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Case (c) n =1, m=1
The linear case is described by
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First Order Equations of Second Degree
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 reinspect the original equation
dy 1
dx

 observe that a solution y  x also satisfies this equation.
This solution cannot be obtained by specializing the arbitray
c, and is thus called a singular

We
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 solution (Hildebrand, 1965).
This unusual circumstance can only occur in the solution of 
nonlinear equations. The singular soltuion sometimes describes
an "envelope" of the family of solutions, but is not in
general a curve belonging to the family of curves 
(since it cannot be obtained by specializing the arbitrary constant c)



Solution Methods for Second Order 
Nonlinear Equations

Some important nonlinear second order 
equations:
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The two most widely used strategies are 
as follows.

1.Derivative substitution method: replace p = dy/dx
if either y is not explicit or x is not explicit.

2. Homogeneous function method: replace v = y/x
if the equation can be put into the homogeneous 
format
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Derivative Substitution Method
Example

The nonlinear Pendulum problem
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Example

The Fick’s law of diffusion for soluble gas 
(A) reactant dissolves into the flat 
interface of a deep body of liquid reagent 
is shown as follows
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Example

Find the solution to the linear equation

x
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The p-substitution method can also be used to 
good effect on linear equations with 
nonconstant coefficients, such as the above.
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Example

Solve the nonlinear second order equation
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Homogeneous Function Method
We attempt to rearrange certain equations into the 

homogeneous format, which carries the dimensional 
ratio y/x,

⎟
⎠
⎞

⎜
⎝
⎛=

x
y,

dx
dyf

dx
ydx 2

2

If this can be done, then a possible solution may evolve 
by replacing v = y/x.

Often, a certain class of linear equations also obey the 
homogeneous property, for example, the Euler 
equation (or Equidimensional equation),
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Note that units of x cancel in the first two terms. This 
linear equation with nonconstant coefficients can be 
reduced to a constant coefficient linear equation by the 
simple change of variables
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Example

Consider the nonlinear homogeneous 
equation
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solutions possible  twoyield  tofactored becan  which
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dpp p (1 2v) 0
dv

This can be satified by p  0, or 
dp p (1 2v)
dv
This latter result is the I-factor equation, which yields for I  exp(v)
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The singular solution, p = 0, which is dv/dt = 0, so 
that y/x = constant is a solution. This solution 
cannot satisfy the two boundary conditions. 



Linear Equations of Higher Order
The most general linear differential equation of nth

order can be written:
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where engineers denote f(x) as the forcing function. From the 
definition of homogeneous type equations, a condition 
(e.g., boundary condition) or equation is taken to be 
homogeneous if it is satisfied by y(x) and is also satisfied 
by Cy(x), where C is an arbitrary constant. Thus the above 
equation is called the nth order inhomogeneous equation, 
because of the appearance of f(x).  If f(x) = 0, then the 
above equation is homogeneous.  



First, we deal with the unforced, or homogeneous nth 

order equation   
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The most general solution to the above equation is called the 
homogeneous or complementary solution (yc). Noting that: 
when the forcing function f(x) is present, it produces an 
additional solution, which is particular to the specific form 
taken by f(x). Hence, solutions arising because of the 
presence of finite f(x) are called particular solutions (yp).  

It is clear in the above homogeneous equation that if all 
coefficients ao, …an-1(x)  were zero, then we could solve the 
final equation by n successive integrations of   

0
dx

yd
n

n
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which produces the expression  
1n

n
2

321 xC....xCxCCy −++++=

containing n arbitrary constants of integration
As a matter of fact, we found that within any defined 

interval (say, 0 ≤ x ≤ L) wherein the coefficients ao(x), 
…an-1(x) are continuous, then there exists a 
continuous solution to the homogeneous equation 
containing exactly n independent, arbitrary constants.

Moreover, because the homogeneous equation is linear, it 
is easily seen that any combination of individual linearly 
independent solutions is also a solution. We defined 
linearly independent to mean: an individual solution 
cannot be obtained from another solution by multiplying 
it by any arbitrary constant.



For example, the solution y1 = c1exp(x) is linearly 
independent of y2 = c2exp(-x), since we cannot multiply 
the latter by any constant to obtain the former. However, 
the solution y3 = 4x2 is not linearly independent of y4 = 
2x2, since it is obvious that y3 can be obtained by 
multiplying y4 by 2.

If we denote P as the linear differential operator
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dx
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then we can abbreviate the lengthy representation of the 
homogeneous nth order equation

[ ] 0)x(yP =



Thus, if n linearly independent solutions (y1, y2, …yn) to the 
associated homogeneous equation:

[ ] 0)x(yP =

can be found, then the sum (theorem of superposition)
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n
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is the general solution to the linear, homogeneous, 
unforced, nth order equation. When we must also deal 
with the case f(x) ≠ 0, we shall call the above solution the 
general, complementary solution and denote it as yc(x).



Thus, it is now clear that if we could find the integral of 
[ ] )x(fyP p =

where yp is the particular solution, then the complete 
solution, by superposition, 

∑
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It should now be clear that we have satisfied the 
original forced equation, since 
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Second Order Unforced Equations: 
Complementary Solutions 

The second order linear equation is of great important 
and arises frequently in engineering.  

0y)x(a
dx
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dx
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For the case of nonconstant coefficients, we can find the 
complementary solution (yc) using the general 
Frobenius series (one of power series) method that will 
be discussed later.

For the case of constant coefficients (ao, a1 = constant), we 
can find the complementary solution (yc) using the 
following method (this method described below is also 
directly applicable to nth order linear equations provided 
all constant coefficients).



Thus, for constant coefficients, we shall assume there 
exists complementary solutions of the form

).(arbitraryconstant n integratio  theisA  andequation  the
of )eigenvalue(or root  sticcharacteri a representsr  where

constant r  A,         );rxexp(Ayc ==

Of course! This is necessary that such a proposed solution 
satisfies the defining equation, so it must be true that
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A r a r a exp(rx) 0

We thereby deduce that the root(s) must be satisfied by

r a r a 0

then this characteristic equation sustains two roots, given by

a a 4a
r

2
Since two possible roots exi
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st, then the theorem of superposition 
suggests that two linearly independent solutions exist for the y
y A exp(r x) Bexp(r x)
Are the soltuions linearly independent? 
To answer this, we need to know the

= +

 nature of the two roots.
Are they real or complex? Are they unequal or equal?



Example
Find the complementary solutions (yc) for the second order 
equation
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Example
Solve the second order equation with boundary conditions
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where y(0) = 0 and dy(0)/dx = 1.
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thAs stipulated earlier,an n  order equation 
must yield n arbitrary constants, and n linearly independent solutions. 
For a present case, n  2, so that we need to find 
an additional linearly independen

=

2

t solution.
To find the second solution, we use the definition 
of linear independence to propose a new solution, so that we write

y v(x)exp(-2x)

Now,  if v(x) is not a simple constant, then the second so

=

1 o

2

lution will be linearly
independent of y   A exp(-2x). Thus, we have used the first solution to 
construct the second one. Inserting y  into 
the defining equation shows after some algebra
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d v 0
dx
so that
v Bx C
hence,
y (Bx C)exp(-2x)
The arbitrary C can be combined with A  and call it A,
hence, our two linearly indepent solutions yield the 
complementary solution
y A exp( 2x) Bx exp( 2x)
This
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= +

= +

= − + −

c

 analysis is in fact a general result for any second order
equation when equal roots occur; that is,
y A exp(rx) Bx exp(rx)
since the second solution was generated from y  v(x)exp(rx),
and it is easy to s
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=
2 2how in general this always leads to d v/dx  = 0.



)x2exp(xy
is conditionsboundary  stipulated  thesatisfying

solutionary complement  thehence, 1;  B ,therefore

)0(B)1(B1
dx

)0(dy
atedifferenti B, find To 0. A   hence

)1)(0(B)1(A0)0(y
,conditionsboundary   theApplying

c

c

c

−=

=

+==

=
+==



Example
Solve the second order equation

0y
dx

yd
2

2

=+

)xsin(i)xcos(e
formulaEuler   thegintroducinby  form useful more intoput  becan it 

purposes,n computatiofor  ely valuablparticularnot  is form This
)ixexp(B)ixexp(Ay

solution  thecan write  wei, riablecomplex va  thedefines This
i1r

occur rootscomplex  so
01r

isequation ticcharateris thesincees,difficultiseey immediatelWe

ix

c

1,2

2

+=

−++=

±=−±=

=+



ix

which allows representation in terms of well-known,
transcendental functions. Thus, the complex function e
can be represented as the linear sum of a real part plus
a complex part. This allows us to wri

[ ] [ ]

( )[ ] ( )[ ]

c

c

te
y A cos(x) i sin(x) B cos(x) i sin(x)
or
y A B cos(x) A B isin(x)
Now, since A and B are certainly arbitrary, hence in general
(A B) is different from (A-B)i, then we can define these groups
of constants as 

= + + −

= + + −
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new constants, so
y Dcos(x) Esin(x)
which is the computationally acceptable general result.
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Solve the second order equation
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Particular Solution Methods for Forced 
Equations 

We consider the case of constant coefficients as 
follows:

)x(fya
dx
dya

dx
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where again we note the general solution is comprised of 
two parts, 

)x(y)x(yy pc +=



There are three widely used methods to find yp(x); the 
first two are applicable only to the case of constant 
coefficients

1. Method of Undetermined Coefficients: this is a 
rather evolutionary technique, which builds on the 
functional form taken by f(x).

2. Method of Inverse Operators: this method builds 
on the property that integration as an operation is 
the inverse of differentiation.

3. Method of Variation Parameters: this method is the 
most general approach and can be applied even 
when coefficients are nonconstant; it is based on 
the principles of linear independence and 
superposition, and exploits these necessary 
properties to construct a particular integral.



1. Method of Undetermined Coefficients

This widely used technique is somewhat intuitive, and is 
also easily implemented. The first step in finding yp is to 
produce a collection of functions obtained by 
differentiating f(x). Each of these generated functions 
are multiplied by an undetermined coefficient and the 
sum of these plus the original function are then used as 
a “trial expression” for yp. The unknown coefficients are 
determined by inserting the trial solution into the 
defining equation. Thus, for a second order equation, 
two differentiation are needed. However, for an nth order 
equation, n differentiations are necessary (a serious 
disadvantage).



Example
Find the complementary and particular solutions for the 
linear equation
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and evaluate arbitrary constants using y(0) = 1, dy(0)/dx = 0.



For the complementary solution, the characteristic 
equation is

)xexp(B)xexp(Ay
hence, distinct; and real are roots  theso

1r    ;01r

c

1,2
2

−+=

±==−

cbxaxy                    
nscombinatiolinear  the

 porpose  that weso , and x yields  x f(x) ofation differenti
repeatedthat notewesolution,particulartheconstruct To

2
p

2

++=

=



 and  x,of
smultiplier all sides, hand-right and -lefton   xof smultiplier

all equatenext   Wec. b, a,for   values thededucingin  help
 willThis zero. magnitude of tscoefficien last two the
 withseries descending a as f(x) written have  we,Note

1)0()x)(0(x)cbx(ax-2a
 thus,equation; defining  theof hand-left the

intosolution  proposedour  insertingby  determined
betoarec) b, (a,t coefficiennedundertermiThe

2

22 ++=++



2xy
 thatsee and sequencein  tscoefficien for the solve We

2a2c0ca2:1
0b0b:x
1a1a;x

produce operations
 deductive These unity. of smultiplier all and  x,of smultiplier all

 sides, hand-right and -lefton   xof smultiplier all equatenext  We

2
p

2

2

−−=

−==∴=−
=∴=−

−=∴=−



The complete solution is then,
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Example
Find the linearly independent particular solutions for 

)xexp(y
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The complementary solution is the same as the previous 
example. Repeated differentiation of the exponential 
function reproduces the exponential function. We are 
keenly aware that a trial solution yp = a exp(x) is not 
linearly independent of one of the complementary 
solutions. We respond to this difficulty by invoking the 
definition of linear independence

)xexp()x(vyp =



Clearly, if v(x) is not a constant, then this particular 
solution will be linearly independent of the complementary 
function exp(x). Inserting the proposed yp(x) in the left-
hand side of the defining equation yields 
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The complete solution is

)xexp(x
2
1)xexp(B)xexp(Ay +−+=

and all three solutions are linearly independent.
Another way to construct the particular integrals under 
circumstances when the forcing duplicates one of the the
complementary solutions is to write

)xexp(axyp =

Inserting this into the defining equation shows a = ½
as before. In fact, if an identity is not produced (i.e., a 
is indeterminate), then the next higher power is used, 
ax2 exp(x), and so on, until the coefficient is found. 



Example
Find the complementary and particular solutions for 
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Differentiating twice yields
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We see some serious disadvantages with this technique, 
especially the large amount of algebraic manipulation 
(which produces human errors) required for only 
moderately complex problems. 



2. Method of Inverse Operators
This method builds on the Heaviside differential operator, 
defined as 

dx
dyDy =

where D is the elementary operator d/dx. It follows certain 
algebraic laws, and must always precede a function to be 
operated upon; thus it is clear that repeated differentiation 
can be represented by
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Because the operator D is a linear operator, it can be 
summed and factored 

0y16Dy8yDy16
dx
dy8

dx
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The operators can be collected together as a larger 
operator ( ) 0y16D8D2 =+−

This also can be factored, again maintaining order of 
operations

( ) 0y4D 2 =−

In manipulating the Heaviside operator D, the laws of 
algebraic operation must be followed. These basic laws 
are as follows.



(a) The Distributive law

For algebraic quantities A, B, C, this law requires

ACAB)CB(A +=+

We use this above law when we wrote

( ) y16Dy8yDy16D8D 22 +−=+−

The operator D is in general distributive.



(b) The Commutative Law

This law sets rules for the order of operation

BAAB =

which does not generally apply to the Heaviside operator, 
since obviously

yDDy ≠
However, operators do commute with themselves, since
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(c) The Associative Law

This law sets rules for sequence of peration

( ) ( )CABBCA =
and does not in general apply to D, since sequence for 
differentiation must be preserved. However, it is true that

 xDy(Dx)y   D(xy) that know  wesince
(Dx)yD(xy)

 that but
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So far, we have only two rules which must be remembered to use the D 
operator. We will lead up to these rules gradually by considering, first, 
the operation on the most prevalent function, the exponential exp(rx). 
Since we have seen that all complementary solutions have origins in 
the exponential function.

Operation on Exponential
It is clear that differentiation of exp(rx) yields
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Operation on Products with Exponential
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The second building block to make operators useful for 
finding particular integrals is the operation on a general 
function f(x).



The Inverse Operator
Modern calculus often teaches that integration as an 
operation is the inverse of differentiation. To see this, write

∫

∫∫
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)x(fDdx)x(f

implies which

)x(fdx)x(fDdx)x(f
dx
d

1

Thus, the operation D-1f(x) implies integration with respect 
to x, whereas Df(x) denotes differentiation with respect to 
x. This “integrator,” D-1, can be treated like any other 
algebraic quantity, provided the rules of algebra, 
mentioned earlier, are obeyed.
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Example
Find the particular solution for 
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To put our polynomial operator in this form, write
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But the series of terms is a geometrical progression and 
the sum to infinity is equal to 2, so we have finally
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This example simply illustrates that Rule 1 is also 
applicable to inverse operators.
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Rule 1: Inverse Operators 

Occasionally, when appling Rule 1 to find a particular 
integral yp, we encounter the circumstance P(r) = 0. This 
is important fail-safe feature of the inverse operator 
method, since it tells the anylyst that the requirements 
of linear independence have failed. The case when P(r) = 
0 arises when the forcing function f(x) is of the exact 
form as one the complementary solutions.



Rule 2: Inverse Operators 
If P(r) = 0 then obviously P(D) contains a root equal to r; 
that is, if we could factor P(D) then
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1 1 1
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For  n repeated roots, this would be written
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Now, since g(D) contains no roots r, then Rule 1 can be used.
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We finally conclude, when roots of the complementary 
solutions appear as the argument in exponential forcing 
function, we will arrive at P(r) = 0, implying loss of linear 
independence. By factoring out such roots, and applying 
Rule 2, a particular solution can always be obtained.
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Find the particular solution for 
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We can see clearly that speed and 
efficiency of this method compared to the 
tedious treatment required by the method 
of undetermined coefficients.



3. Method of Variation of Parameters
This method can be applied even when coefficients are 
nonconstant, so that we treat the general case
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First, it is assumed that the two linearly independent 
complementary solutions are known
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The Variation of Parameters method is based on the 
premise that the particular solutions are linearly 
independent of u(x) and v(x). We start by proposing

)x(v)x(F)x(u)x(F)x(y vup +=

where obviously Fu and Fv are not constant. It is clear 
that if we insert this proposed solution into the defining 
equation, we shall obtain one equation, but we have two 
unknowns: Fu and Fv. Thus, we must propose one 
additional equation, as we show next, to have a 
solvable system. Performing the required differentiation 
shows using prime to denote differentiation
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It is clear that a second differentiation will introduce 
second derivatives of the unknown functions Fu, Fv. To 
avoid this complication, we take as our second 
proposed equation
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This is the most convenient choice, as we can verify. 
We next find yp”
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Inserting dyp/dx and d2yp/dx2 into the defining equation 
we obtain, after rearrangement
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It is obvious that the bracketed terms vanish, because 
they satisfy the homogenous equation [when f(x) = 0] 
since they are complementary solutions. The remaining 
equation has two unknowns,

)x(f'v'F'u'F vu =+
This coupled with our second proposition
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forms a system of two equations with two unknown. 
Solving these by defining p = Fu’ and q = Fv’ shows;

(Eq. a)
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Example
The second order equation with nonconstant coefficients 
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has complementary solutions (when f(x) = 0) obtainable by 
the Frobenius series method.  
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Find the particular solution when f(x) = 1/x3/2



Here, we take the complementary functions to be 
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We first compute the denominator for the integrals 
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Inserting this into the integrals yields: 
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Summary of Particular Solution Methods
1. Method of Undetermined Coefficients
This technique has advantages for elementary polynomial 

forcing functions (e.g., 2x2+1, 5x3+3, etc.) and it is easy to 
apply and use. However, it becomes quite tedious to use 
on trigonometric forcing functions, and it is not fail-safe in 
the sense that some experience is necessary in 
constructing the trial function. Also, it does not apply to 
equations with nonconstant coefficients.

2. Method of Inverse Operators
This method is the quickest and safest to use with 

exponential or trigonometric forcing functions. Its main 
disadvantage is the necessary amount of new material 
and a student must learn to apply it effectively. Although 
it can be used on elementary polynomial form), it is quite 
tedious to apply for such conditions. Also, it cannot be 
used on equations with nonconstant coefficients.



3. Method of Variation of Parameters
This procedure is the most general method, since it can be 

applied to equations with variable coefficients. Although 
it is fail-safe, it often leads to intractable integrals to find 
Fv and Fu. It is the method of choice when treating forced 
problems in transport phenomena, since both cylindrical 
and spherical coordinate systems always lead to 
equations with variable coefficients.


