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" A
First Order Equations

The I-factor equation: integrating factor

method

Yy )y =F(x)
dx

If there exists an elementary, separable
solution, we can rewrite:

dx




The solution can be obtained by direct
integration:

C

1
yzﬁjl(x)f(x)dwrm

where C is an arbitrary constant of integration.

To prove this solution exists, we need to
specify I(x).

I(x) = ?



From
d[1(x)y]
dx

= 1(X)T(x)

We get,
ﬂ N 1 dlI(x)
dx I(x) X
Therefore,

1 di(x)
Then, () dx

1(x) = exp( j au(X)dX)

where |(X) is called the integrating factor.

y =1(x)

o(X)



"
Exact Solutions

Occasionally, a solution exists which is an
exact differential

do(x,y) =0 Eq. 0
According to the chain rule,

do =2 dx+ 2P dy = 0
OX oy

How do we use this information to find y as
a function x?



" A
Using the property of continuous functions,

we specify
0(0p) O (@(pj
oX\ oy )] oy\oX

Therefore, suppose there exists an
equation of the form

M(X,y)dx + N(X,y)dy =0
Then

O O
M(x,y):a_i and N(x,y)=5—(yP



I IS to exist as a possible solution,
then the necessary and sufficient
condition for ¢ to exist IS

N _om
oX oy
Example

Solve the equation

(ny2 + 2)dx + (2x2y + 4y)dy =0



" A
(2xy2 + 2)dx + (szy + 4y)dy =0

Check :
8—M = 4Xxy, a—N = 4xy
oy OX

"hen this eqution is exact.
"he unknow function ¢(X, y) can be described by :

99 _ 2XYy* + 2 Eq. 1
OX

oQ 2
— =2Xy+4y Eq. 2
oy



First, we integrate Eq. 1with respect to x
(holding y constant)

=Xy +2X+f(y) Eas

Next, we insert Eq. 3 into Eq. 2
df (y)

2X°Y + = 2X°y +4y
f(y)=2y* +C, F. 4
Finally, adding Eqg. 4 into Eq. 3 yields

¢ =X’y* +2Xx +2y° +C,



Since Eq. 0 integrates to yield ¢ = C,, then ¢
also equals to some arbitary constant.
Combining C1 and C2 into another arbitrary
constant yields

Xy’ +2x+2y° =K =C,-C,
, (K-2x)
- (x2+2)

y:i\/(K—Zx)

(x2 +2)




"
Equations Composed of Homogeneous
Functions

The first order equation
P(x,y)dx+Q(X,y)dy =0

is said to be homogeneous if P and Q are both
homogeneous of the same degree n, for some
constant n (including zero).

This implies that first order equations composed
of homogeneous functions can always be
arranged in the form

d_y:f(zj
dx X



" A
Example

The nonlinear equation

y%xzﬂ:xyd—y

dx dx
can be rearranged to the form

o )
e

which iIs clearly homogeneous. Replacing y/x = v to get,

dv V2 dv v
dx v-—-1 dx v-1




" J
Separation of variables yields

(v—l)dv _ dx

Y, X
Integrating term by term produces

V-In(v) = In(X) + In(K)
where In(K) Is an arbitrary constant of integration.

y
x| ! |
Ky — exp(v) _ X

"%




" A
Bernoulli’s Equation

The Bernoulli equation
Y POy =QuY"; N1
X

is similar to the first order I-factor equation,
expect for the nonliear term on the right-hand
side, y". If we divide y" throughout, we can
obtain

Y j—y FP()Y ™ = Q(x)
X



" A
For the first term, we can show that
Ldy 1 ody™)

dx 1-n dx
Replacing y*" =,

y

then the original equation is now linear in v

1 \dv
(1 j o P(x)v =Q(x)

which is easily solved using the | - factor method




" A
Riccati’s Equation

The Riccati’s equation

Y o px)y? +Q(X)y+R(X)
dx

A nonlinear equation which arises in both
continuous and staged processes.

A frequently occurring special form is the case
when P(x) = -1, then we get

g—§+y2 = Q(X)y+R(x) Eq.5



" A
A change of variables given by

~1du
T udx

Yields the derivative
dy 1d%u 1(du)
dx  udx? U2 (dxj
Inserting these into Eq. 5 eliminates the
nonlinear term

d—u—Q(X)——R(X)u 0
dx?

which is a linear second order equation with
nonconstant coefficients. This may be solved
and discussed later.



" A
Example

A constant-volume batch reactor undergoes
the series reaction sequence

A—8 sB—* 5C
The initial concentration of A is denoted by C,,

whereas B and C are initially nil. The reaction rates
per unit reactor volume are described by

R, =kC", R,=kC"—k,C"

Find the solutions of the differential equations
describing Cg(t) for the following cases:

(@) n=1,m=2

(b) n=2,m=1

(c) n=1,m=1



" A
Case (a) n =1, m=2
The material balances are written as

dC
- aCa
dC
dtB =K,Cp - kzcé

The solution for C , is straightforward

Ca =Cpoexp(=kyt)

Hence, the expression for C; is nonlinear
dC

d—’[B — k1CAO exp(_klt) - kZCZB

If we scale time by replacing 6 = k,t, the above expression

becomes identical to the special form of the Riccati equation

dC,
do

+C2 =R(0)

where Q(0) =0and R(0) = % C.o exp[— % ]

2 2



" A
If we make the Riccatl transformation

c _ldu
u do
we finally obtain

d?u(0) Kk, k
——LC,.exp| ——20|u(®)=0

We have thus transformed a nonlinear first order
equation to a solvable, linear second order equation



" J
Case (b) n =2, m=1
The simultaneous equations for this case are

ac, _ —kC: ..C, = Co |,
dt 1+k,C ot

dC

d'[B = k1CA2\ —k,Cg

Inserting C, yields the classic inhomogeneous (I-factor) equation

2
0C, +k,Cg =k, Cro
dt 1+k,C,t

The integrating factor is I = exp(k,t); hence, the solution is

2
C, =k, exp(=k,t) j exp(kzt)L CAé } dt + C exp(—k,t)

+k1 AO
where C is the constant of integration. The integral is tabulated in the form

j exp(ax) dx

X2



so we next substitute

1=1+Kk,C, . t,dt =

hence, we obtain

—K
Cy =Cho eXp(—k,t) eXp(k :

)| P 4 1 Cexp(—k,)
1~ A0 T
Performing the integration yields finally

Cs =Cexp(—k,t)+C,, exp{—[kzu Kyt H

kl AO

20 e T

+ + + +
T @O @) (@)

Now, since t=1when t =0, the arbitary constant C becomes, since C(0) =0,

C=C,,expl - Kot exp(a) —a . (@) + (@) +..
KiCao OA) @2) )3




" J
Case (¢c) n =1, m=1
The linear case Is described by

dC

th =—-k,C, ..C, =C,, exp(—k,t)
dC

dtB — kchO exp(_klt) - kZCB

This also yields the | - factor equation, if the time variation is desired.
Often the relationship between C, and Cj, is desired, so we can use a
different approach by dividing the two equations to find

dCB — _1_|_ & &
dC, k,\ C,
This takes the homogeneous form, let

Co_y,  UCe_( OV
C, dc, dc,

+V




hence,
C, v _ —1+ﬁ(v)—v
dC, K,
SO we obtain
dVv dC,

C
—1+(k2—1)v A

1

Integrating, noting V =0 when C, =C,, yieldsfinally

C, Kk 1_( C. ]KUl

CA kz o kl CAo




First Order Equations of Second Degree

A nonlinear equation, which is first order and second degree, is

2
(d_yj —2ﬂ+y:x—1
dx dx

This requires a different approach, as nonlinear systems often do.
The first step is to replace p = dy/dx and solve the remaining
quadratic equation for p

p:gleidx—y
X

Suggests replacing u = x - y, so that we have

du_,_dy

dx dx

We now have the separable equation
Wiy

dx

Integrating yields the general solution
2:Ju =+x+c¢

Re placing u = x - y shows finally

4y = 4x -(c £ x )’

Again, we observe that the arbitary constant of integration is implicit, which is
quite usual for nonlinear systems.



We reinspect the original equation

W14 fxy

dx
and observe that a solutiony = x also satisfies this equation.

This solution cannot be obtained by specializing the arbitray

c, and is thus called a singular solution (Hildebrand, 1965).

This unusual circumstance can only occur in the solution of
nonlinear equations. The singular soltuion sometimes describes

an "envelope" of the family of solutions, but Is not In

general a curve belonging to the family of curves

(since it cannot be obtained by specializing the arbitrary constant c)



" A
Solution Methods for Second Order
Nonlinear Equations

Some important nonlinear second order

equations:
ﬂ + 2dy +Yy* =0 (Lane - Emden equation)
dx*  x dx
Cdzt\lf +° siny = 0 (Nonlinear Pendulum equation)
d%y

ooo
X ><

~+ay + by® = 0 (Duffing equation)

o2

y +a(y’ —1)g—y+ y =0 (Van der Pol equation)
X



"
The two most widely used strategies are
as follows.

1. Derivative substitution method: replace p = dy/dx
if either y is not explicit or x is not explicit.

2. Homogeneous function method: replace v = y/x
if the equation can be put into the homogeneous

format
2
dx dx X




=
Derivative Substitution Method
Example

The nonlinear Pendulum problem

d” y+oo sin(y) =0
X

Make the substitution

dy
b= dx

Therefore,

E+ o’ sin(y) =0
dx




Using the chain rule,

dp dpdy dp )
dx dydx dy
So we obtain

pd—p+0)28in(y)=0
dy

Integrating yields
p° = 2w’ cos(y) +C,
Two brances are possible on taking square roots

p= g—y = J_r\/ 2w° cos(y) +C,
X

So finally, the integral equation results
J——
\/ 2m° cos(y) +C,

=+X+C,




" A
Example

The Fick’s law of diffusion for soluble gas
(A) reactant dissolves into the flat
interface of a deep body of liquid reagent
is shown as follows

d°C,
dz?

where D is the diffusivity coefficient, C IS

the concentration of gas A, z Is the distance of

diffusion from the interface, k is the rate constant

and n Is the integer number

D

K,Ca



Make a substitution p = ddCA , then
4

d’C, dp dp dC, dp
dz> dz dC, dz dC,
Therefore,

dp K
[ Balen 0
Y4c, (Dj g

Integrating yields

k Cn+l
R

Two brances appear. However we must select
the negative root becasuse we expect C, to diminish
as we penetrate deeper into the liquid.

n+1
dc, Z(knj C e
dz D An+1

P




Since the reaction is irreversible, eventually all of the species A wil be
consumed, so that C, — 0as z — oo. Now, as C, — 0, we expect the flux

(d;:A ) also to diminish to zero. This suggest that we should take C, =0, for
Z

an unbounded liquid depth; hence,

dC, _ | 2k, iz
/co D(n+1)

and this integral is

1-n 2k 2
S ) N
2 D(n+1)

At the interface (z = 0), we denote the gas solubility (Henry's law)

as C,,so0 C, is evaluated as
« \(1-n)/2
C,= (CA)



" A
Example

Find the solution to the linear equation

2
OIy'ZXOI—y:

- X
dx dx

The p-substitution method can also be used to
good effect on linear equations with
nonconstant coefficients, such as the above.



" J
First, replace p = dy/dx to get

%+2xp:x

dx
This is the familiar I-factor linear equation, so let

| =exp _[ 2xdx = exp(x*)
hence, the solution for p is

D= exp(-xz)j 2x exp(+x°)dx + Aexp(—x°?)
Noting that xdx = %dx2 yields

p= % +Aexp(—x*)

Integrating again produce

y =%X+Ajexp(—x2)dx+ B



We could replace the indefinite integral with a definite one,
since this would only change the already arbitrary constant

y = %x + Aj exp(—o.*)do + B
0

This integral is similar to a tabulated function called the error function
2 X

erf(x) = —= | exp(—a*)do
N

Using this, we can now write our final solution in terms of known functions
and two arbitrary constant

y=%x+Cerf(x)+B



" A
Example

Solve the nonlinear second order equation
d? dy \°
AR
dx dx
This nonlinear equation can be put into a familiar from,
again by replacing p = dy/dx
dp

— +p°-x=0
dx P

This is the special form of Ricatti's equation with Q =0, R =X,

soletp= 1dz giving the linear equation
Z dx
2
d—i—xz =0
dx

This is the well - known Airy equation, which will be discussed later.



"
Homogeneous Function Method

We attempt to rearrange certain equations into the
homogeneous format, which carries the dimensional

ratio y/x,
Y 1:(dy yj
dx dx X

If this can be done, then a possible solution may evolve
by replacing v = y/x.

Often, a certain class of linear equations also obey the
homogeneous property, for example, the Euler
equation (or Equidimensional equation),

X° —= dy + AX—= dy +By=0; A, B constant
dx’ dx



X j Y+ Ax :y +By=0; A, B constant
X° X

Note that units of x cancel in the first two terms. This
linear equation with nonconstant coefficients can be
reduced to a constant coefficient linear equation by the
simple change of variables

X =ge'
or
t = In(x)



Changing variablesstarting with the first derivative
dy dydt dyl
dx dtdx dtx

d2y: d (dy 1) d (dy _tj dt
dx? dx\dt x/) dt\ dt dx
dy _d (dye‘tj—

dx? dtl dt X

d’y _(d%y . dy |1
dx? | dt? dt X

dy (d’y dy)1
dx* | dt® dt)x?

Inserting these into the defining equation causes
cancellation of x

Zty+(A 1)—+ By =0

Now we can use the method of solving the linear constant
coefficient equations.



" A
Example

Consider the nonlinear homogeneous
equation

d? dy )’ 2
Y [W) (V) g
dx dx X
Under conditions when the boundary conditions
are:

BC1: d—yzl atx =1
dx

BC2: y=0 atx=1



Re place y/x = v so that

dx®>  dx dx
hence,
2
xzd—\;+2xd—v+x2(d—vj +2 d—V:O
dx dx dx dx

This has the Euler - Equidmensional form, so let x =¢'

2 2
d ;/_dv +2dv+(dvj +2v(d—vj:0
dt dt dt dt dt

Now, since the independent variable (t) is missing, write p = dv/dt
dzv_dp_dpdv_pd_p
dt* dt dvdt = dv
so that

dp
P dv
which can be factored to yield two possible solutions

+p+p°+2vp=0



" A
p[%+p+(1+2v)}=0
dv

This can be satified by p = 0, or

@+ p=—(1+2v)
dv

This latter result is the I-factor equation, which yields for I = exp(v)

p =1-2v + Cexp(-V)

We pause to evaluate C noting

Io:d_v:de:dy_X
dt dx dx X

hence, atx = 1,thenp = landv = y/x = 0,s0C = 0.

Integrating again

Vg

1-2v




" A
yields

K
NPT
Replacing v=y/xand x =e', and since y=0at x =1, then
K =1so0 that squaring yields
Y- (xz—l)_ x 1

2X 2 2X

The singular solution, p = 0, which is dv/dt = 0, so
that y/x = constant is a solution. This solution
cannot satisfy the two boundary conditions.



" JJ
Linear Equations of Higher Order

The most general linear differential equation of nth
order can be written:

d'y
dx"

dn—ly
dxn—l

+...+al(x)j—3:+ao(x)y =f(X)

T an—l (X)

where engineers denote f(x) as the forcing function. From the
definition of homogeneous type equations, a condition
(e.g., boundary condition) or equation is taken to be
homogeneous if it is satisfied by y(x) and is also satisfied
by Cy(x), where C is an arbitrary constant. Thus the above
equation is called the nt" order inhomogeneous equation,
because of the appearance of f(x). If f(x) =0, then the
above equation is homogeneous.



" A
First, we deal with the unforced, or homogeneous nt"
order equation

dny dn—ly
dx" dx"*

The most general solution to the above equation is called the
homogeneous or complementary solution (y.). Noting that:
when the forcing function f(x) is present, it produces an
additional solution, which is particular to the specific form
taken by f(x). Hence, solutions arising because of the
presence of finite f(x) are called particular solutions (y,).

It is clear in the above homogeneous equation that if all
coefficients a_, ...a,,4(x) were zero, then we could solve the
final equation by n successive integrations of

d"y
dx"

d
+...+a1(x)d—)3:+a0(x)y =0

T an—l (X)

=0




which produces the expression
y=C,+C,Xx+C,x*+...+C x"*

containing n arbitrary constants of integration

As a matter of fact, we found that within any defined
interval (say, 0 < x <L) wherein the coefficients a_(x),
...a,.1(x) are continuous, then there exists a
continuous solution to the homogeneous equation
containing exactly n independent, arbitrary constants.

Moreover, because the homogeneous equation is linear, it
is easily seen that any combination of individual linearly
independent solutions is also a solution. We defined
linearly independent to mean: an individual solution
cannot be obtained from another solution by multiplying
it by any arbitrary constant.
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For example, the solution y, = c,exp(x) is linearly
independent of y, = c,exp(-x), since we cannot multiply
the latter by any constant to obtain the former. However,
the solution y; = 4x? is not linearly independent of y, =
2x2, since it is obvious that y; can be obtained by

multiplying y, by 2.
If we denote P as the linear differential operator

dn dn—l d
= +d X +...+ad,(X)—+ad, (X
e -1 )dx”‘l 1 )dx o (X)

then we can abbreviate the lengthy representation of the
homogeneous nt" order equation

Ply(x)]=0

P




Thus, if n linearly independent solutions (y,, y,, ...Y,) to the
associated homogeneous equation:

Ply(x)]=0

can be found, then the sum (theorem of superposition)

y=Cy,(X)+C,Y,(X) +....+C Y, (X) = D> C, Y, (X)
k=1

Is the general solution to the linear, homogeneous,
unforced, nt" order equation. When we must also deal
with the case f(x) # 0, we shall call the above solution the
general, complementary solution and denote it as y_(x).



Thus, it is now clear that if we could find the integral of

Ply, |=f(x)

where yp is the particular solution, then the complete
solution, by superposition,

Y = Y500+ Y. () = ¥,00+ . €y, ()

It should now be clear that we have satisfied the
original forced equation, since

Py =Py, +Y.)=Py, +Py, =f(x)
since by definition

Py. =0
Py, =1(x)



"
Second Order Unforced Equations:
Complementary Solutions

The second order linear equation is of great important
and arises frequently in engineering.

dxy+a (x)—+a (X)y=0

For the case of nonconstant coefficients, we can find the
complementary solution (y.) using the general
Frobenius series (one of power series) method that will
be discussed later.

For the case of constant coefficients (a_, a, = constant), we
can find the complementary solution (y.) using the
following method (this method described below is also
directly applicable to nt" order linear equations provided
all constant coefficients).
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Thus, for constant coefficients, we shall assume there
exists complementary solutions of the form

y. = Aexp(rx); A, r =constant
where r represents a characteristic root (or eigenvalue) of
the equation and A Is the integration constant (arbitrary).

Of course! This is necessary that such a proposed solution
satisfies the defining equation, so it must be true that

2

d d
e [Aexp(rx)]+a, ™ [Aexp(rx)]+a,[Aexp(rx)|=0

Performing the indicated operations yields



" J
Al r’+ar+a, [exp(rx) =0
We thereby deduce that the root(s) must be satisfied by
[rz +a1r+a0] =0
then this characteristic equation sustains two roots, given by

—a, + \/af —4a,
[ = 5

Since two possible roots exist, then the theorem of superposition
suggests that two linearly independent solutions exist for the y.
y. = Aexp(r,x) + Bexp(r,X)

Are the soltuions linearly independent?

To answer this, we need to know the nature of the two roots.
Are they real or complex? Are they unequal or equal?



" A
Example

Find the complementary solutions (y.) for the second order
equation

2
d—32/+5d—y+4y =0
dx dx
The characteristic equation is
r°+5r+4=0
5457 —4*4 —5+3
rl,2 — 2 — T — —1’—4

Thus, the solution is

y. = Aexp(—X) + Bexp(—4x)

Itis clear that the roots are real and distinct, so the
two solutions are linearly independent.



Example

Solve the second order equation with boundary conditions
dy , ,dy
— +4y =0
dx? dx /=

where y(0) = 0 and dy(0)/dx = 1.

The characteristic equation is
r°+4r+4=0
so that

—4+.J(4) —4*4 .

I, =

which shows that only one root results (i.e., a double root); hence,

we might conclude that the general solution is

Y, = A, exp(-2x)

Clearly, a single arbitrary constant cannot satisfy the two stated boundary conditions,
so it should be obvious that one solution, along with its arbitrary constant, is missing.



" J

As stipulated earlier,an n™ order equation

must yield n arbitrary constants, and n linearly independent solutions.
For a present case, n = 2, so that we need to find

an additional linearly independent solution.

To find the second solution, we use the definition
of linear independence to propose a new solution, so that we write

Y, = V(x)exp(-2x)

Now, if v(X) is not a simple constant, then the second solution will be linearly
independent of y, = A_exp(-2x). Thus, we have used the first solution to
construct the second one. Inserting y, into

the defining equation shows after some algebra



" Jd
v _g
dx’
so that
v=Bx+C
hence,
y, = (BXx+ C)exp(-2x)
The arbitrary C can be combined with A and call it A,
hence, our two linearly indepent solutions yield the
complementary solution
y. = Aexp(—2x) + Bxexp(-2x)
This analysis is in fact a general result for any second order
equation when equal roots occur; that is,
y. = Aexp(rx) + Bxexp(rx)
since the second solution was generated fromy = v(x)exp(rx),

and it is easy to show in general this always leads to d*v/dx* = 0.



Applying the boundary conditions,
y.(0)=0=A(1)+B(0)1)
hence A =0.To find B, differentiate

dy.(0) _, _ B(1) + B(0)
dx

therefore, B =1, hence, the complementary solution

satisfying the stipulated boundary conditions Is
Y. = Xexp(—2x)



Example

Solve the second order equation
d°y
—-+y=0
dx” y

We immediately see difficulties, since the charateristic equation is
r+1=0

so complex roots occur

r, =+J-1=4i

This defines the complex variable I, we can write the solution

y. = Aexp(+ix) + Bexp(-ix)

This form is not particularly valuable for computation purposes,

It can be put into more useful form by introducing the Euler formula

e™ = cos(x) +isin(x)



" J
which allows representation in terms of well-known,
transcendental functions. Thus, the complex function ™
can be represented as the linear sum of a real part plus
a complex part. This allows us to write
y. = A[cos(x) +isin(x) |+ B[cos(x) —isin(x)]
or
Y. =(A+B)[cos(x)|+(A-B)|isin(x)]
Now, since A and B are certainly arbitrary, hence in general
(A + B) 1s different from (A-B)I, then we can define these groups
of constants as new constants, so
y. = Dcos(x)+ Esin(x)
which is the computationally acceptable general result.



|
Example
Solve the second order equation

2
ay _,dy

dx* dx+2y:0

The characteristic equation is
—2r+2=0

_2:N2 42
2
so the solution are

Y. = exp(x)|Aexp(+ix) + Bexp(-ix)]
Introducing the Euler formula as before shows
y, =exp(x)[Ccos(x) + Dsin(x)]

1+i




"
Particular Solution Methods for Forced

Equations
We consider the case of constant coefficients as
follows:
d? d
Y ra, - +ay=f(x)
dx X

where again we note the general solution is comprised of
two parts,

Y=Y (X)+Y,(X)



" J
There are three widely used methods to find y(x); the

first two are applicable only to the case of constant
coefficients

1. Method of Undetermined Coefficients: this is a
rather evolutionary technique, which builds on the
functional form taken by f(x).

2. Method of Inverse Operators: this method builds
on the property that integration as an operation is
the inverse of differentiation.

3. Method of Variation Parameters: this method is the
most general approach and can be applied even
when coefficients are nonconstant; it is based on
the principles of linear independence and
superposition, and exploits these necessary
properties to construct a particular integral.



"
1. Method of Undetermined Coefficients

This widely used technique is somewhat intuitive, and is
also easily implemented. The first step in finding y,, is to
produce a collection of functions obtained by
differentiating f(x). Each of these generated functions
are multiplied by an undetermined coefficient and the
sum of these plus the original function are then used as
a “trial expression” for y,. The unknown coefficients are
determined by inserting the trial solution into the
defining equation. Thus, for a second order equation,
two differentiation are needed. However, for an nth order
equation, n differentiations are necessary (a serious
disadvantage).



" A
Example

Find the complementary and particular solutions for the
linear equation

d2
dx)zl y=x

and evaluate arbitrary constants using y(0) = 1, dy(0)/dx = 0.



For the complementary solution, the characteristic
equation is

r’=1=0; r,=x=1
so the roots are real and distinct; hence,
y. = Aexp(x) + Bexp(—x)

To construct the particular solution, we note that repeated

differentiation of f(x) = x* yields x and , so that we porpose
the linear combinations

y, =ax’ +bx+c



The undertermined coefficient (a, b, c) are to be
determined by inserting our proposed solution into

the left - hand of the defining equation; thus,

2a - (ax” +bx +c) = x°+(0)(x) + (0)1

Note, we have written f(x) as a descending series with
the last two coefficients of magnitude zero. This will
help in deducing the values for a, b, c. We next equate all

multipliers of x* on left - and right - hand sides, all multipliers
of X, and



We next equate all multipliers of x* on left - and right - hand sides,
all multipliers of x, and all multipliers of unity. These deductive
operations produce

x> —a=1.a=-1

X:=b=0..b=0

l:2a—c=0..c=2a=-2

We solve for the coefficients in sequence and see that

Y, =—X*—2



"
The complete solution is then,
y = Aexp(x) + Bexp(—x) — (x2 + 2)
It is clear that all solutions are linearly independent.
Finally, we apply boundary conditions y(0) =1and
dy(0)/dx =0to see
1=A+B-2
0=A+B
This shows
3

A=B=2
2
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Example
Find the linearly independent particular solutions for

d°y
dx?

The complementary solution is the same as the previous
example. Repeated differentiation of the exponential
function reproduces the exponential function. We are
keenly aware that a trial solution y, = a exp(x) is not
linearly independent of one of the complementary
solutions. We respond to this difficulty by invoking the
definition of linear independence

Y, =V(X)exp()

y = exp(x)
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Clearly, if v(x) is not a constant, then this particular
solution will be linearly independent of the complementary
function exp(x). Inserting the proposed y (x) in the left-

hand side of the defining equation yields

d’v  _dv
> +2—=
dx dx

To find v(x), we replace dv/dx =p

QE+2p:1

dx
This is the | - factor equation with solution

1

v 1 —-2X
p=—=—+Ce
dx 2

Integrating again shows
1

V=Ix—2e? 4D
2 2
This suggests a particular solution
1
Yy, = [5 xjexp(x)
since the other two terms yield contributions that are not linearly independent
(they colud be combined with the complementary parts).
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The complete solution is

y = Aexp(X)+ Bexp(—X) + % X exp(X)

and all three solutions are linearly independent.

Another way to construct the particular integrals under
circumstances when the forcing duplicates one of the the
complementary solutions is to write

y, = axexp(x)

Inserting this into the defining equation shows a = "%
as before. In fact, if an identity is not produced (i.e., a
is indeterminate), then the next higher power is used,
ax? exp(x), and so on, until the coefficient is found.
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Example
Find the complementary and particular solutions for

dy . dy
dx?  dx

The characteristic equation is
> —8r+16=(r—4)

Thus, we have repeated roots
r,=4

+16y = 6xe™

As we learned earlier, the second complementary solution is obtained
by multiplying the first by X, so that

y. = Ae*™ + Bxe"

However, the forcing function has the same form as xe”,

so our first trial for the y function is

yp — a)(2e4x

which is linearly independent of both parts of the complementary solution.



Differentiating twice yields

y, = 2axe” +4dax’e””
y, = 2ae™ +8axe™ +8axe™ +16ax’e"

Inserting these relations into the defining equation yields

2a +16ax +16ax? p** —[16ax + 32ax? p** +16ax p** = 6xe*
Cancelling terms shows the null result

2ae¥ = pxe™

hence, a Is Indeterminate. Next, try the higher power

yp _ aXSe4x



" J
y, =3ax’e” +dax’e™
y, = 6axe™ +12ax°e™ +12ax’e™ +16ax’e"
Inserting these yields
[6ax + 24ax? +16ax® b** - [24ax? + 32ax° p**
+[16ax° b = 6xe®
Cancelling terms, what remains identifies the undetermined coefficient

6axe™ = 6xe™

hence,a =1.

The complete solution can now be written
y =(A+Bx+x°)e*

We see some serious disadvantages with this technique,
especially the large amount of algebraic manipulation
(which produces human errors) required for only
moderately complex problems.
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2. Method of Inverse Operators

This method builds on the Heaviside differential operator,
defined as

Dy = d_y
dx
where D is the elementary operator d/dx. It follows certain
algebraic laws, and must always precede a function to be
operated upon; thus it is clear that repeated differentiation
can be represented by

d’y
D(Dy)= D2y =
(Dy)=D%y 7
d’y
D(D%y)= D3y =
(D?y)=D%y =3
Dny:d y
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Because the operator D is a linear operator, it can be
summed and factored

2
d—>2/ dy —2 116y =D’y—-8Dy+16y =0
dx dx
The operators can be collected together as a larger

operator (D?-8D+16)y =0

This also can be factored, again maintaining order of

operations (D B 4)2 y=0

In manipulating the Heaviside operator D, the laws of
algebraic operation must be followed. These basic laws
are as follows.
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(a) The Distributive law

For algebraic quantities A, B, C, this law requires

A(B+C)=AB+AC

We use this above law when we wrote
(D? -8D +16)y = D%y —8Dy +16y

The operator D is in general distributive.
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(b) The Commutative Law

This law sets rules for the order of operation

which does not generally apply to the Heaviside operator,
since obviously

Dy = yD

However, operators do commute with themselves, since

(D+4)D+2)=(D+2)D+4)
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(c) The Associative Law

This law sets rules for sequence of peration
A(BC)=(AB)C

and does not in general apply to D, since sequence for
differentiation must be preserved. However, it is true that

D(Dy)=(DD)y
but that

D(xy) = (DX)y
since we know that D(xy) = (Dx)y + xDy
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So far, we have only two rules which must be remembered to use the D
operator. We will lead up to these rules gradually by considering, first,
the operation on the most prevalent function, the exponential exp(rx).
Since we have seen that all complementary solutions have origins in
the exponential function.

Operation on Exponential

It is clear that differentiation of exp(rx) yields
D(e™) =re”
and repeated differentiation gives
DZ(erX) _ r.Zerx
D"(e™) =r"e"”
and a sum of operators, forming a polynomial such as P(D)
P(D)(e™) =P(r)e”
(D2 +5D + 4)erX = (r2 +5r + 4)erX :see the characteristic equation
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Operation on Products with Exponential

The second building block to make operators useful for
finding particular integrals is the operation on a general

function f(x).
D(f(x)e™) =e"Df (x) +f(xX)D(e™) =e™ (D +r)f (x)
Re peated differentiation can be shown to yield
D*(f(x)e™) =e™ (D +r)°f(x)

D"(f(x)e™) =e™(D+r)"f(x)

and for any polynomial of D, say P(D)
P(D)(f(x)e™) =e™(D+r)f ()



The Inverse Operator

Modern calculus often teaches that integration as an
operation is the inverse of differentiation. To see this, write

d
d—xjf(x)dx: Djf(x)dx:f(x)

which implies
j f (x)dx = D (x)

Thus, the operation D-'f(x) implies integration with respect
to x, whereas Df(x) denotes differentiation with respect to
x. This “integrator,” D-1, can be treated like any other
algebraic quantity, provided the rules of algebra,
mentioned earlier, are obeyed.
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Again, we have already seen that

polynomials of operator D
obey two important rules:

1.Rule1:P(D)e™ = P(r)e™
2.Rule 2: P(D)(f(x)e™ )= e™P(D + r)f (x)

*Next, we will show that these rules are also
obeyed by inverse operators.



Example

Find the particular solution for
dy
——-2y=¢"
dx /

Write this in operator notation

(D-2)y, =€*

hence keeping the order of operation in mind

yoo L e

" D=2

Clearly, any polynomial in the denominator can be expanded
Into an ascending series by synthetic division; in the present case,
we can use the binomial theorem written generally as

(1+f ) =1+ pf +Mf2 n p(p—1)p—2)

1)2) (1)2)3)

f3 4.+
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To put our polynomial operator in this form, write
1 1

D=2 —2(1+Dj
2

so that we see the equivalence f = D/2, p = -1; hence,
2 3
1 :—1 1+(1Dj+(1Dj +(£Dj +...
—2(1+ Dj 2 2 2 2
2
hence operating on exp(x) using Rulel

2 3
yp:LeX =—l 1+(1Dj+(1D + 1D +... |e*
D-2 2 2 2 2
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But the series of terms is a geometrical progression and
the sum to infinity is equal to 2, so we have finally

and the general solution is, since y, = Aexp(2x)
y(X) = Aexp(2x) —exp(X)

This example simply illustrates that Rule 1 is also
applicable to inverse operators.
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Rule 1: Inverse Operators
I w1
——e  =——¢
P(D) P(r)
Thus, we could have applied this rule directly to the example
without series expansion; since r =1, we have

y,=(D-2)"¢" =—¢*
which is quite easy and efficient to use

Occasionally, when appling Rule 1 to find a particular
integral yp, we encounter the circumstance P(r) = 0. This
is important fail-safe feature of the inverse operator
method, since it tells the anylyst that the requirements
of linear independence have failed. The case when P(r) =
0 arises when the forcing function f(x) is of the exact
form as one the complementary solutions.
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Rule 2: Inverse Operators

If P(r) = 0 then obviously P(D) contains a root equal to r;
that is, if we could factor P(D) then

1 1 1
P(D) (D-r)g(D)
For n repeated roots, this would be written

1 1 1
P(D) (D-r)" g(D)
Now, since g(D) contains no roots r, then Rule 1 can be used.
However, we must modify operation of 1/(D-r)" when it operates
on exp(rx). Thus, we plan to operate on exp(rx) in precise sequence.
Consider Rule 2 for polynomial in the denominator
L [f(x)e™ | =e" L
P(D) P(D+r)
and suppose f(x) = 1, thenif P(D) = (D-r)", we have

1

(Di)” (" ]=e” 55 1)

f(x)




This suggests n repeated integrations of unity

~([[.f1ox :X?

Now, reconsider the general problem for a forcing function exp(rx)

1
exp(rx) = ———exp(rx)
P(D) (D-r)"g(D)
First, operate on exp(rx) using Rulelas g(D)™ exp(rx), then

shift exp(rx) to get

exp(rx) 1

(D-r)’ g(r)
Next, operate on exp(rx) using Rule 2, taking f(x) =1; hence
(since g(r) IS finite)

exp () m exp(ﬁgX’ J[[ o= (r) X

We finally conclude, when roots of the complementary
solutions appear as the argument in exponential forcing
function, we will arrive at P(r) = 0, implying loss of linear
independence. By factoring out such roots, and applying
Rule 2, a particular solution can always be obtained.




Example

Find the particular solution for
d* d
—g Y —2 4+ 4y = xe™*
dx dx

Applying the operator D and factoring
(D?-4D+4)y =(D-2)y, =xe®
and solve for y,

1 2X
- Xe

(D-2)
If we apply Rulel, wesee P(2-2)=0.So, apply Rule 2,
noting that f(x) = x, hence replacing (D - 2) with (D + 2- 2)
y =e’ 1 X

i (D+2-2Y¥
- l X3e2X

D7 6

Yp =

Yp=¢€



As we saw earlier, for repeated roots, the general complementary
solution is (A + Bx)exp(2x), so that the complete solution is

y = (A + Bx)e* Jr%xse2X

We can see clearly that speed and
efficiency of this method compared to the
tedious treatment required by the method
of undetermined coefficients.
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3. Method of Variation of Parameters

This method can be applied even when coefficients are
nonconstant, so that we treat the general case

2
=Y a2

aX aX

+2,(X)y =T(x)

First, it is assumed that the two linearly independent
complementary solutions are known

Y, (X) = Au(x) + Bv(x)



The Variation of Parameters method is based on the
premise that the particular solutions are linearly
independent of u(x) and v(x). We start by proposing

Yo (X) = F, (X)u(x) + F,(x)v(x)

where obviously F, and F, are not constant. It is clear
that if we insert this proposed solution into the defining
equation, we shall obtain one equation, but we have two
unknowns: F, and F,. Thus, we must propose one
additional equation, as we show next, to have a
solvable system. Performing the required differentiation
shows using prime to denote differentiation



%: (uFl; +vF¢)+(u'Fu +v'FV)

It is clear that a second differentiation will introduce
second derivatives of the unknown functions F ,, F,. To
avoid this complication, we take as our second
proposed equation

UF, +VF, =0

This is the most convenient choice, as we can verify.
We next find y,”

d%y,

7 = (F,u"+F,v")+(F,"u'+F,'v')
X
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Inserting dy /dx and d?y /dx? into the defining equation
we obtain, after rearrangement

F [u+a,(x)u'+a, (x)u]+F, [v'+a, (x)v'+a, (X)V]
+F 'uU+F,'v'=1(x)

It is obvious that the bracketed terms vanish, because
they satisfy the homogenous equation [when f(x) = 0]
since they are complementary solutions. The remaining
equation has two unknowns,

F,'u+F,'v'=1(x) (Eq. a)
This coupled with our second proposition

uF,+vF,'=0

forms a system of two equations with two unknown.
Solving these by defining p = F, and q = F,’ shows;
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Vv
p=-—q
U

Inserting this into Eq.a gives
u'(—%q}r v'g="~1(x)

hence

dF, —uf(x)
q — — ' |
dx u'v—v'u
and this allows p to be obtained as

dF, v (X)
p: — ' |
dx u'v—-v'u

There are now separable, so that within an arbitary constant :




FU(X): . .Vf(X). dx
“Uuv—-Vvudu

) = [T gy
“Uuv—-—Vvu

These integrations, then produce the particular solutions,
worth repeating as

Y, = U(XF, (X) + V(X)F, (X)

Noting that the denominator (u'v - v'u) represent the negative
of the so - called Wronskian determinant

u v

W(u,v) = =uv'-u'v

u v
which is nonzero if u and v are indeed linearly independent.



Example
The second order equation with nonconstant coefficients

2
4xg+6oIy

+ f(x
e y =1(x)

has complementary solutions (when f(x) = 0) obtainable by
the Frobenius series method.

B sin(\/;) COS(\/;)
Y. (X)=A I +B Ix

Find the particular solution when f(x) = 1/x3/2




Here, we take the complementary functions to be

- sin(\/;)
Jx

- cos(&)
Jx

We first compute the denominator for the integrals

u'v—v'u= L 3/2 (cosz(&)Jrsinz(&)): . 3,2

2 X 2 X

Inserting this into the integrals yields:



3/2

F =I2COSX&)X3’2 ~_dx =4sin(vx)

F =—j25in(\&)x3’2 L dx=4cos(&)

Y & X3/2

so taht we finally have the particular solution
=2 2
sin («/;)+4cos («/;) 4

S RN

which is linearly independent of the complementary solutions.



gummary o! !’articular Solution Methods

1. Method of Undetermined Coefficients

This technique has advantages for elementary polynomial
forcing functions (e.g., 2x2+1, 5x3+3, etc.) and it is easy to
apply and use. However, it becomes quite tedious to use
on trigonometric forcing functions, and it is not fail-safe in
the sense that some experience is necessary in
constructing the trial function. Also, it does not apply to
equations with nonconstant coefficients.

2. Method of Inverse Operators

This method is the quickest and safest to use with
exponential or trigonometric forcing functions. Its main
disadvantage is the necessary amount of new material
and a student must learn to apply it effectively. Although
it can be used on elementary polynomial form), it is quite
tedious to apply for such conditions. Also, it cannot be
used on equations with nonconstant coefficients.



3. Method of Variation of Parameters

This procedure is the most general method, since it can be
applied to equations with variable coefficients. Although
it is fail-safe, it often leads to intractable integrals to find
F, and F . It is the method of choice when treating forced
problems in transport phenomena, since both cylindrical
and spherical coordinate systems always lead to
equations with variable coefficients.



