

Technical Terms

Heat Value of Refuse

- British thermal unit (BTU): an amount of energy necessary to heat one pound of water one degree Fahrenheit.
- Kilocalorie: an amount of energy necessary to heat one kilogram of water one degree Celsius.
- Joule
- Kilowatt-hour (kWh)

The amount of energy or heat value in an unknown fuel can be estimated by ultimate analysis, compositional analysis, proximate analysis, and calorimetry.

To convert	to	multiply by	
Btu	Calories	252	
	Joules	1054	
	kWh	2.93×10^{-4}	
Calories	Btu	3.97×10^{-3}	
	Joules	4.18	
	kW/h	1.16×10^{-6}	
Joules	Btu	9.49 × 10 ⁻⁴	
	Calories	0.239	
	kWh	2.78×10^{-7}	
Kilowatt-hours	Btu	3413	
	Calories	8.62 × 10 ⁵	
	Joules	3.6×10^{6}	

Ultimate Analysis

Ultimate analysis uses the chemical makeup of the fuel to approximate its heat value.

Example of equation for estimating the heat value of refuse:

 $Btu \,/\, lb = 144C + 672H + 6.2O + 41.4S - 10.8N$ where C, H, O, S, and N are the weight percentages (dry basis) of carbon, hydrogen, oxygen, sulfur, and nitrogen respectively.

Compositional Analysis

Formulas based on compositional analyses are an improvement over formulas based on ultimate analyses.

Using regression analysis and comparing the results to actual measurement of heat value, a compositional model:

 $Btu \, / \, lb \,{=}\, 1238 \,{+}\, 15.6R \,{+}\, 4.4P \,{+}\, 2.7G \,{-}\, 20.7W$

where R = plastics, percent by weight on dry basis

P = paper, percent by weight on dry basis

G = food wastes, percent by weight on dry basis

W = water, percent by weight on dry basis

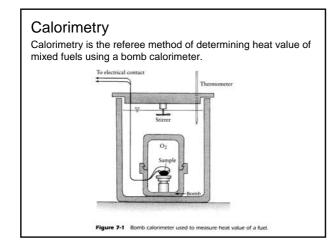
Component	Heat value, Btu/Ib dry weight	
Food waste	2000	
Paper	7200	
Cardboard	7000	
Plastics	14,000	
Textiles	7500	
Rubber	10,000	
Leather	7500	
Garden trimmings	2800	
Wood	8000	
Glass	60	
Nonferrous metals	300	
Ferrous metals	300	
Dirt, ashes, other fines	3000	

Table 7-5 Typical Mois	ture Contents of MSW	
Component	Typical moisture, percent	
Food waste	70	
Paper	6	
Cardboard	5	
Plastics	2	
Textiles	10	
Rubber	2	
Leather	10	
Garden trimmings	60	
Wood	60	
Glass	2	
Nonferrous metals	2	
Ferrous metals	3	
Dirt, ashes, other fines	8	

Proximate Analysis

In proximate analysis it is assumed that the fuel is composed of two types of materials: volatiles and fixed carbon. A commonly used proximate analysis equation :

Btu/lb = 8000A + 14,500B


where A = volatiles, fraction of all dry matter lost at $600^{\circ}C$

B = fixed carbon, fraction of all dry matter lost between 600°C and 950°C

Table 7-6 Typical Proximate Analysis of MSW Components

	Fraction by weight				
Component	Moisture	Volatile	Fixed	Ash	
Mixed paper	0.102	0.759	0.084	0.054	
Yard waste	0.752	0.186	0.045	0.016	
Food waste	0.783	0.170	0.036	0.010	
Polyethylene	0.002	0.985	0.001	0.012	
Wood	0.200	0.697	0.113	0.008	

Note: If the values in Table 7-6 are to be used in the proximate analysis equation, the fractions have to be recalculated on the basis of *dry* matter.)

Targets of Waste Management

- · Waste that could not be avoided has to be utilized as far as possible
- · The amount of harmful substances in the waste has to be kept as small as possible
- Assure a sustainable treatment and disposal of waste that could not be utilized
- Overall, assure safe disposal and that problems are not shifted to following generations

No longer possible to deposit untreated waste!

TA-Siedlungsabfall, 1993 in Germany

Targets of Incineration including their positive effects

Inertisation of hazardous waste

Reduction by volume

residues **Destruction or concentration** of contaminants

Recovery of waste energy

Transforming residues into usable secondary products

Save of landfill space

Conserve raw-materials and resources

Concept of Combustion

The energy from the sun is stored, using the process of photosynthesis, in organic molecules, and this energy is released as the the organic materials decompose.

The photosynthesis process :

 CO_2 + sunlight + nutrients + $H_2O \rightarrow (HC)_x + O_2$

where the (HC)_x represents an infinite variety of hydrocarbons.

The degradation of the high - energy organics :

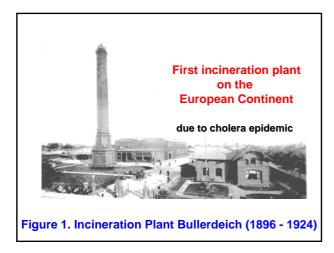
 $(HC)_{x} + O_{2} \rightarrow CO_{2} + H_{2}O + heat energy$

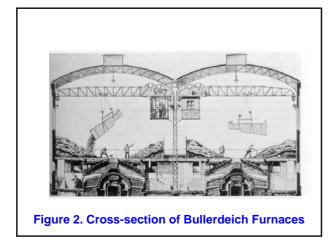
Combustion of the organic fraction of refuse is simply a very rapid decomposition process.

Combustion Hardware Used for MSW

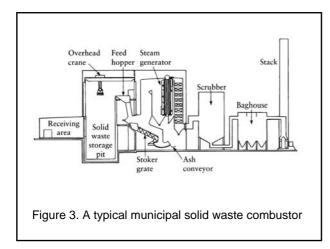
- Incinerators: refuse is burned without recovering energy and flue gas cleaning (see Fig. 1,2)

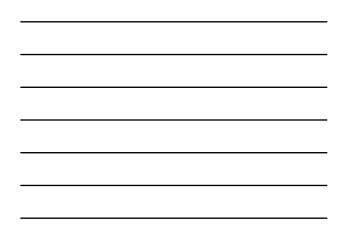
- Waste-to-energy combustor with flue gas cleaning:

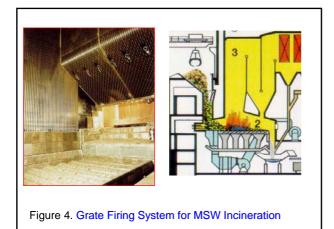

-modern combustors combine solid waste combustion with energy recovery (see Fig. 3,4, most refuse combustors operate in the range of 980 to 1090°C).

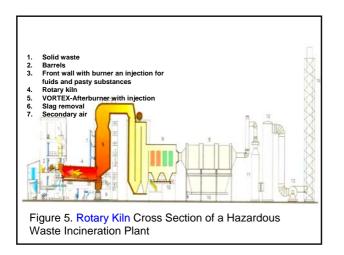

- the combustor with a modification of the combustion chamber (rotary kiln, see Fig. 5,6) and a modificcation of a furnace wall (water wall, Fig. 7).

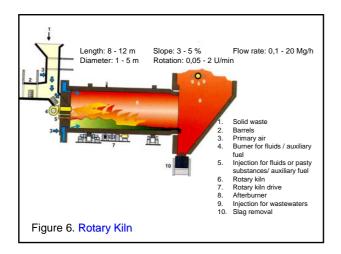
- Modular starved air combustor (Fig. 8).

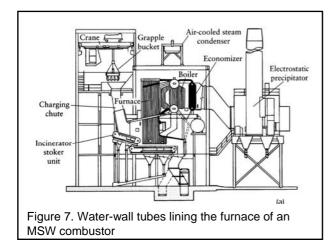

- Pyrolysis (gasification): it is destructive distillation, or combustion in the absence of oxygen (Fig. 9).

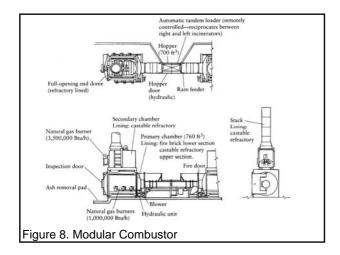

 $C_6H_{10}O_5$ + heat energy $\rightarrow CH_4 + H_2 + CO_2 + C_2H_2 + C + H_2O$











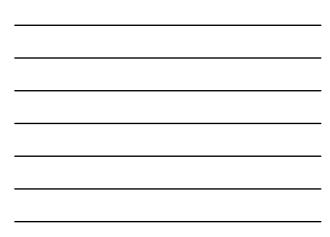
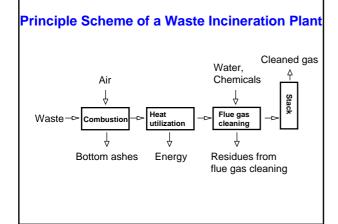




Figure 8. Pyrolysis Plant (Plastic waste to Oil)

Kind of waste	Firing system
Municipal waste	Grate firing
Hazardous waste	Rotary furnace
Sewage sludge	Fluidized bed

Two criteria that can be easily monitored, ensure complete combustion of the solid waste and recovery:

(1) ash must not exceed a percent combustible level.

(2) exhaust gas in the stack must be within a predetermined temperature range.

Mass Burn versus RDF (Refuse Derived Fuel)

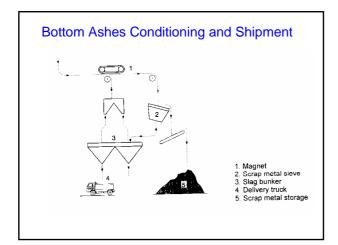
- A mass burn unit has no preprocessing of solid waste prior to being fed into the combustion unit.

- In a RDF system the solid waste is processed prior to combustion to remove noncombustible item and to reduce the size of the combustible fraction, thus producing a more uniform fuel at a higher heat value.

Name	Description
RDF-1	Unprocessed MSW (the mass burn option)
RDF-2	MSW shredded but no separation of materials
RDF-3	Organic fraction of shredded MSW. This is usually produced in a materials recovery facility (MRF) or from source-separated organics such as newsprint.
RDF-4	Organic waste produced by a MRF that has been further shredded into a fine, almost powder, form, sometimes called <i>fluff</i>
RDF-5	Organic waste produced by a MRF that has been densified by a pelletizer or a similar device. These pellets can often be fired with coal in existing furnaces.
RDF-6	Organic fraction of the waste that has been further processed into a liquid fuel such as oil
RDF-7	Organic waste processed into a gaseous fuel

Undesirable Effects of Combustion

- Waste Heat
- Ash
- Air Pollutants



Ash

Material	Percent by weight	
Metals	16.1	
Combustibles	4.0	
Ferrous metal	18.3	
Nonferrous metal	2.7	
Glass	26.2	
Ceramics	8.3	
Mineral, ash, other	24.1	

Table 7-13 Total	Metal in Combined Ash mg/kg of ash by weight	_
Aluminum	17,800	
Calcium	33,600	
Sodium	3.800	
Iron	20,400	
Lead	3,100	
Cadmium	35	
Zinc	4,100	
Manganese	500	
Mercury	less than 3	

Air Pollutants

- Particulates
- Gases: CO, SO₂, HC, NO_x, Mercury vapor, Dioxin

Development of Emissions from Waste Incineration in Germany (daily mean values)						n in	
	Fly ash [mg/Nm ³]	HCI [mg/Nm³]	SO ₂ [mg/Nm³]	NO _x [mg/Nm³]	Hg [mg/Nm³]	Cd, TI [mg/Nm ³]	Dioxins Furanes [ng/Nm ³
1970	100	1000	500	300	0,5	0,2	50
1980	50	100	100	300	0,2	0,1	20
1990	1	5	20	100	0,01	0,005	0,05
2000*	0,4	0,1	2,44	82	0,0005	0,0006	0,0023

