เอกสารประกอบการเรียน

วิชา 1302 320

Engineering Management Laboratory I

ส่วนที่ 1 การใช้โปรแกรมในการคำนวณทางสถิติ

การใช้โปรแกรมในการคำนวณทางสถิติ

เอกสารสารชุดนี้จะประกอบไปด้วยหาที่เกี่ยวข้องกับการใช้โปรแกรมช่วยคำนวณทางสถิติ ใน 4 หัวข้อ ดังนี้

- การทดสอบสมมุติฐาน
- การประมาณค่า
- การวิเคราะห์ความแปรปรวน
- การวิเคราะห์ความถุดถอยและสหสัมพันธ์

1. การใช้โปรแกรม MiniTab ในการทดสอบสมมุติฐาน <u>เมื่อประชากรมีการแจกแจงแบบปกติและรู้ความแปรปรวนประชากร</u>

ตัวสถิติที่ใช้ในการทคสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของประชากร คือ z <u>ตัวอย่างที่ 1</u> ระบบคืดตัวของที่นั่งของนักบินถูกส่งกำลังด้วยตัวขับคันชนิดหนึ่ง ซึ่งอัตราการเผา ใหม้ของตัวขับคันนี้มีความสำคัญมาก โดยมีข้อกำหนดว่าอัตราการเผาใหม้เฉลี่ยจะต้องมีค่าเท่ากับ 50 ซม./วินาที จากข้อมูลในอคีตทราบว่าอัตราการเผาใหม้มีการแจกแจงแบบปกติและมีค่าเบี่ยงเบน มาตรฐานเป็น 2 ซม./วินาที นักบินต้องการทคสอบว่าอัตราการเผาใหม้เฉลี่ยของตัวขับคันมีค่า เป็นไปตามข้อกำหนดหรือไม่ เขาจึงทำการทคลองกับตัวอย่าง 25 ตัวอย่าง หาอัตราการเผาใหม้เฉลี่ย ได้ 51.3 ซม./วินาที เขาจะสรุปผลอย่างไรที่ระดับนัยสำคัญ 0.05

จากโจทย์ สามารถตั้งสมมุติฐานได้ดังนี้

- H_₀ : µ = 50 ซม/วินาที
- H₁: µ ≠ 50 ซม/วินาที

1. เถือกคำสั่ง Stat > Basic Statistic > 1-Sample z

2. ที่หน้าต่าง 1-Sample Z							
🕖 คลิกที่ Summarized Data	a						
2 ใส่ จำนวนตัวอย่าง (Sam	2 ใส่ จำนวนตัวอย่าง (Sample size) = 25						
3 ใส่ก่าเฉลี่ยตัวอย่าง Mear	n = 51.3						
 ใส่ค่า Standard deviation 	n = 2						
5 ใส่ค่า Test mean = 50							
ອ คลิกที่ Options							
1-Sample Z (Test and Confid	ence Interval)						
	Samples in columns:						
Select	Graphs Options						
Негр	OK Cancel						

ที่หน้าต่าง 1-Sample Z – Option

ใส่ระดับความเชื่อมั่น (Confidence level) = 95.0

2 เลือกเครื่องหมาย สมมุติฐานรอง (Alternative) เป็น not equal

3 คลิก OK ที่ หน้าต่าง 1-Sample Z – Option

4 คลิก OK ที่ หน้าต่าง 1-Sample Z

1-Sample Z (Test and Confidence Interval)	X
C Samples in columns:	
	1
	~
1-Sample Z - Options	
Confidence level: 95.0	
Alternative: not equal	
Select Graphs Options	

4. ผลการคำนวณจะแสดงที่หน้าต่าง Session

I Session						
22/6/2009 13:34:35						
Welcome to Minitab, press F1 for help.						
One-Sample Z						
Test of mu = 50 vs not = 50 The assumed standard deviation = 2						
N Mean SE Mean 95% CI 25 51.3000 0.4000 (50.5160, 52.0840)	Z 3.25	P 0.001				
<						

การแปรผล

- ถ้าค่า P-value มีค่าน้อยกว่า หรือเท่ากับระดับนัยสำคัญที่ตั้งไว้ (α-level) ให้ปฏิเสธ สมมุติฐานหลัก และยอมรับสมมุติฐานรอง
- ถ้าค่า P-value มีค่ามากกว่าระดับนัยสำคัญที่ตั้งไว้ (α-level) แสดงว่าไม่สามารถปฏิเสธ สมมุติฐานหลักได้ จึงไม่สามารถยอมรับสมมุติฐานรอง

จากตัวอย่างนี้ เมื่อ P-value (0.001) < α-level (0.05) จึงปฏิเสธสมมุติฐานหลัก และสรุปได้ว่า อัตราการเผาไหม้เฉลี่ยมีค่าไม่เท่ากับ 50 ซม./วินาที

<u>เมื่อประชากรมีการแจกแจงแบบปกติและไม่รู้ความแปรปรวนประชากร</u>

```
<u>ตัวอย่างที่ 4</u> จากการทดลองวัดแรงที่กระทำต่อชิ้นงานจนชิ้นงานชำรุด มีค่าดังนี้
19.8 18.5 17.6 16.7 15.8 15.4 14.1 13.6 11.9 11.4 11.4
8.8 7.5 15.4 15.4 19.5 14.9 12.7 11.9 11.4 10.1 7.9
จากข้อมูลการทดลองนี้ จะสรุปได้หรือไม่ว่าค่าเฉลี่ยของแรงที่กระทำต่อชิ้นงานจนชิ้นงานชำรุดมีค่า
เกินกว่า 10 MPa ที่ระดับนัยสำคัญ 0.05 และสมมติว่าแรงที่กระทำต่อชิ้นงานจนชิ้นงานชำรุดมีการ
แจกแจงแบบปกติ
```

จากโจทย์ สามารถตั้งสมมุติฐานได้ดังนี้

 $H_0: \mu \leq 10 \text{ MPa}$

 $H_1: \mu > 10 \text{ MPa}$

จากข้อมูลข้างต้นจะเห็นว่า เป็นข้อมูลที่ไม่ทราบค่าความแปรปรวน และมีจำนวนตัวอย่าง น้อยกว่า 30 ข้อมูล จึงเลือกใช้สถิติ student t ในการทดสอบสมมุติฐาน

1. สร้าง Worksheet ใหม่ และใส่ข้อมูลทั้ง 22 ค่า ลงใน C1

MINITAB - Untitled									
Eile Edit D <u>a</u> ta <u>C</u> alc <u>S</u> tat <u>G</u> raph E <u>di</u> tor <u>T</u> ools <u>W</u> indow <u>H</u> elp									
🗃 🖬 🍯 👗 🖻 🛍	📁 🖬 🎒 👗 🖻 🛍 🗠 🗠 💷 🏌 🖡 👫 🚫 🎖 🗊								
-C 🖬 🗟 🛈 🖻 🗐 👝	r≞t. (Ctrl-	+C)P	▋■ 図 -= -=	Ja 🔏 🔯	\$ \$. O				
📗 Project Manager									
📄 Untitled	Ses	sion			Worksheet				
	<u>ا</u>	8/	6/2010 15:20:52		Worksheet	1			
Graphs ReportPad		iii w	orksheet 1 ***						
📄 Related Documents		Ŧ	C1	C2	C3	C4	C5		
Worksheets			แรงที่กระทำต่อชิ้นงาน						
Worksheet 1 Columns		1	19.8						
Constants		2	18.5						
Matrices		3	17.6						
		4	16.7						
		5	15.8						
		6	15.4						
		7	14.1						
		8	13.6						
		9	11.9						

2. เลือกคำสั่ง Stat > Basic Statistic > 1-Sample t

🚬 MINITAB - Untitled	i			
<u>File E</u> dit D <u>a</u> ta <u>C</u> alc	<u>Stat</u> <u>Graph</u> Editor <u>T</u> ools	Window Help		
🖻 🖬 🎒 👗 🖻	Basic Statistics	R Display Descriptive Statistics		
	<u>R</u> egression	Store Descriptive Statistics		
	<u>A</u> NOVA	▶ 쁍꽃 <u>G</u> raphical Summary		
Project Manager	DOE	▶ 1Z 1-Sample <u>Z</u>		
Untitled	<u>C</u> ontrol Charts	1t <u>1</u> -Sample t	<u> </u>	
History	Quality Tools	• 2t 2-Sample t		
Graphs	Reliability/Survival	t.t Paired t		
ReportPad	<u>M</u> ultivariate		<u>`</u> 4	CE
Worksheets	Time Series		-	03
🖃 🧰 Worksheet 1	<u>T</u> ables	ZP 2 Proportions		
Columns	<u>N</u> onparametrics	▶ ^{o²} _{σ²₂} 2 V <u>a</u> riances		
Matrices	<u>E</u> DA	COR Correlation		
	Power and Sample Size	tov Covariance		
	5 6	TEST Normality Test		
	7	14.1		

3. ที่หน้าต่าง 1-Sample t

, 1 III		
		1-Sample t (Test and Confidence Interval)
Ses	sion 8/6/2010 15:2	C1 แรงที่กระกา Samples in columns:
	Worksheet	
	+ แรงที่กระ	C Summarized data
	2	Sample size:
	3 4	Standard deviation:
	5 6	
	7 8	Test mean: 18 (required for test)
	9 10	
<	11 12	Select Options
	13 14	Help OK Cancel
		!

- คลิกที่ Samples in columns
- 2 double click ที่ C1 ให้ชื่อ column ปรากฏขึ้นในช่อง Sample in columns
- อ ใส่ค่า Test mean = 10

4 คลิกที่ Options...

3. ที่หน้าต่าง 1-Sample t – Option

	1-Sample t (Test and Confidence Interval)
Session	© Samples in columns:
Worksheet	ี่ แรงก็ ี่ กระทำต่อชี้ ึนงาน '
แรงที่กระ 1	C Summarized data
2	1-Sample t - Options
3 4	Confidence level: 95.0
5	
7	Alternative: greater than
8	r testj
10	Help OK Cancel
11	Select Graphs Options
13	Heln OK Cancel
14	

- ใส่ระดับความเชื่อมั่น (Confidence level) = 95.0
- อ เลือกเครื่องหมาย สมมุติฐานรอง (Alternative) เป็น greater than
- 3 คลิก OK ที่ หน้าต่าง 1-Sample t Option
- 4 คลิก OK ที่ หน้าต่าง 1-Sample t
- 4. โปรแกรมจะแสดงผลที่หน้าต่าง Session ดังรูป

จากตัวอย่างนี้ จะได้ P-value = 0.000

เมื่อ P-value (0.000) < α-level (0.05) จึงปฏิเสธสมมุติฐานหลัก และสรุปได้ว่าแรงที่กระทำต่อ ชิ้นงานจนชิ้นงานชำรุดมีค่าเกินกว่า 10 MPa ที่ระดับนัยสำคัญ 0.05

<u>การทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของประชากรสองประชากร</u>(μ_1 , μ_2) <u>เมื่อประชากรทั้งสองมีการแจกแจงแบบปกติและรู้ความแปรปรวนประชากร</u>(รู้ σ_1^2, σ_2^2)

<u>ตัวอย่างที่7</u> วิศวกรเกมีด้องการที่จะลดเวลาในการแห้งตัวของสีรองพื้นชนิดหนึ่ง เขาจึงทดลองสูตร ผสมสี 2 สูตร คือ สูตรที่1 ซึ่งเป็นสูตรผสมสีมาตรฐาน และสูตรที่2 ที่มีการเติมส่วนผสมตัวใหม่ซึ่ง เชื่อว่าจะช่วยให้สีแห้งได้เร็วขึ้น จากข้อมูลในอดีตทราบว่ากวามแปรปรวนของเวลาในการแห้งตัว ของสีรองพื้นมีก่าเป็น 8 นาที และผสมตัวใหม่ที่เติมลงไปไม่ส่งผลใดๆต่อกวามแปรปรวนของเวลา ในการแห้งตัวของสีรองพื้น เขาทดลองสูตรที่1กับชิ้นงานตัวอย่าง 10 ชิ้น หาเวลาเฉลี่ยที่สีแห้งตัวได้ เป็น 121 นาที และทดลองสูตรที่2กับชิ้นงานตัวอย่างอีก 10 ชิ้น หาเวลาเฉลี่ยที่สีแห้งตัวได้ เป็น 121 นาที และทดลองสูตรที่2กับชิ้นงานตัวอย่างอีก 10 ชิ้น หาเวลาเฉลี่ยที่สีแห้งตัวได้เป็น 112 นาที จากผลการทดลองวิศวกรสามารถสรุปผลเกี่ยวกับส่วนผสมตัวใหม่นี้ได้ว่าอย่างไร ที่ระดับ นัยสำคัญ 0.05 และให้หาก่า P-value ด้วย สมมติว่าเวลาในการแห้งตัวของสีรองพื้นทั้งสองสูตรมี การแจกแจงแบบปกติ

สมมุติฐาน

$$\begin{split} H_{o}: \boldsymbol{\mu}_{1} \leq \boldsymbol{\mu}_{2} \\ H_{1}: \boldsymbol{\mu}_{1} > \boldsymbol{\mu}_{2} \\ \tilde{\boldsymbol{\mu}_{0}} \\ \tilde{\boldsymbol{\mu}_{0}} \\ H_{o}: \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} \leq 0 \\ H_{1}: \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} > 0 \end{split}$$

1. เถือกคำสั่ง Stat > Basic Statistic > 2-Sample t

2. ใส่ข้อมูล Sample size, Mean และ Standard deviation จากนั้น คลิก ที่ Assume equal variances และ คลิกที่ **Options...**

15-100-10-15-20-52	10 in studies with	•		
2-Sample t (Test and Cont	fidence Interva	l)		
	 Samples: Samples: Subscripts Samples: First: Second: Summariz First: Second: Assume e 	in one column s: in different co zed data Sample size: 10 10 2001 variance	lumns Mean: 121 112	Standard deviation: 2.83 2.83
Select			Graphs	Options
Help			ОК	Cancel

 ที่หน้าต่าง 2-Sample t – Options ใส่ค่า Confidence level = 95.0 ค่า test difference = 0 เลือก เครื่องหมายของสมมุติฐานรอง (Alternative) เป็น greater than และคลิก OK

	C Samples in one column Samples: Subscripts:	TU
	2-Sample t - Options	> 9
	Confidence level: 95.0	
	Test difference: 0.0	
	Alternative: greater than 🔽	
	.83 Help OK Cancel	
11 12	Select Graphs Options.	·
13 14	Help OK Cancel	

4. ที่ Window Session จะแสดงผลการกำนวณ การอ่านผลจะอ่านที่ค่า P-value

```
Two-Sample T-Test and Cl
Sample N Mean StDev SE Mean
1 10 121.00 2.83 0.89
2 10 112.00 2.83 0.89
Difference = mu (1) - mu (2)
Estimate for difference: 9.00000
95% lower bound for difference: 6.80534
T-Test of difference = 0 (vs >): T-Value = 7.11 P-Value = 0.000 DF = 18
Both use Pooled StDev = 2.8300
```

จากตัวอย่างนี้ จะใด้ P-value = 0.000

เมื่อ P-value (0.000) < α-level (0.05) จึงปฏิเสธสมมุติฐานหลัก H₀ : μ₁ - μ₂ ≤ 0 นั้นคือผลต่าง ของค่าเฉลี่ยของเวลาในการแห้งตัวของสีรองพื้นสูตรมาตรฐาน และสูตรที่เพิ่มส่วนผสมตัวใหม่ มี ค่ามากกว่า 0 และสรุปได้ส่วนผสมตัวใหม่ช่วยลดเวลาในการแห้งตัวของสีรองพื้น ที่ระดับนัยสำคัญ 0.05

กรณีเมื่อประชากรทั้งสองมีการแจกแจงแบบปกติและไม่รู้ความแปรปรวนประชากร (ไม่รู้ σ_1^2 และ σ_2^2) -สำหรับขนาดตัวอย่าง n1< 30 และ n2< 30

 รู้ว่า σ₁² = σ₂²
 <u>ตัวอย่างที่8</u> วิศวกรเคมีกำลังศึกษาสารเร่งปฏิกิริยาทางเคมี 2 ชนิดว่ามีผลอย่างไรต่อค่าเฉลี่ยของ ประสิทธิภาพของกระบวนการผลิตทางเคมี โดยที่สารเร่งปฏิกิริยาชนิดที่ 1 ถูกใช้อยู่ในปัจจุบัน แต่ สารเร่งปฏิกิริยาชนิดที่ 2 ก็เป็นที่ยอมรับได้ มีราคาถูกกว่าและไม่ทำให้ความแปรปรวนของ ประสิทธิภาพของกระบวนการผลิตทางเคมีเปลี่ยนแปลงไป วิศวกรเคมีตั้งเงื่อนไขไว้ว่า ถ้าสารเร่ง ปฏิกิริยาชนิดที่ 2 ไม่ทำให้ก่าเฉลี่ยของประสิทธิภาพของกระบวนการผลิตทางเคมีเปลี่ยนแปลงไป ด้วย เขาจะใช้สารเร่งปฏิกิริยาชนิดที่ 2 แทนชนิดที่ 1 เขาจึงทำการทดลองได้ผลดังนี้

```
\overline{x}_1= 92.255 %S_1= 2.39 %n_1= 8\overline{x}_2= 92.733 %S_2= 2.98 %n_2= 8
```

วิศวกรเกมีควรจะใช้สารเร่งปฏิกิริยาชนิดที่ 2 แทนชนิดที่ 1 หรือไม่ที่ระดับนัยสำคัญ 0.05 สมมติว่า ประสิทธิภาพของกระบวนการผลิตทางเกมีที่ใช้สารเร่งปฏิกิริยาทั้งสองชนิดมีการแจกแจงแบบปกติ • รู้ว่า $\sigma_1^2 \neq \sigma_2^2$

<u>ตัวอย่างที่9</u>

ผู้ผลิตเครื่องเล่นวิดี โอกำลังทดสอบแผงวงจร ไฟฟ้าอยู่สองแบบว่าแผงวงจร ไฟฟ้าทั้งสองแบบนั้น ผลิตกระแส ไฟฟ้าที่เท่าเทียมกันหรือไม่ ซึ่งข้อมูลของผลการทดลองเป็นดังนี้

แบบที่ 1 $\overline{\mathbf{X}}_1 = 24.2$ แอมแปร์ $\mathbf{S}_1^2 = 10$ (แอมแปร์)² $\mathbf{n}_1 = 15$ แบบที่ 2 $\overline{\mathbf{X}}_2 = 23.9$ แอมแปร์ $\mathbf{S}_2^2 = 20$ (แอมแปร์)² $\mathbf{n}_2 = 10$

ที่ระดับนัยสำคัญ 0.10 กระแสไฟฟ้าเฉลี่ยที่ได้จากแผงวงจรไฟฟ้าทั้งสองแบบแตกต่างกันหรือไม่ สมมติว่ากระแสไฟฟ้าที่ได้จากแผงวงจรไฟฟ้าทั้งสองแบบมีการแจกแจงแบบปกติและมีความ แปรปรวนไม่เท่ากัน

```
*************
```

2. การใช้โปรแกรม MiniTab ในการประมาณค่า

การใช้โปรแกรม MiniTab ช่วยในการประมาณค่า จะใช้คำสั่งเดียวกับการทดสอบ สมมุติฐาน แต่ไม่ต้องใส่ค่า Test mean

ส่วน การเลือก Alternative นั้น

- เลือก not equal กรณีที่ต้องการประมาณก่าแบบสองค้าน
- เลือก less than กรณีที่ต้องการประมาณล่าด้านบนด้านเดียว
- เลือก greater than กรณีที่ต้องการประมาณค่าด้านล่างด้านเดียว

ช่วงความเชื่อมั่นของค่าเฉลี่ยของประชากรเดียว(μ)

1.1 เมื่อประชากรมีการแจกแจงแบบปกติและรู้ความแปรปรวนประชากร(σ^2)

-ใช้ตัวสถิติ z ในการประมาณค่า

<u>ตัวอย่างที่1</u> ค่าการเหนี่ยวนำความร้อนของเหล็กArmcoที่อุณหภูมิ 100 °F และกำลังไฟฟ้า 550 วัตต์ มีการแจกแจงแบบปกติและมีค่าความแปร ปรวนเท่ากับ 0.09 (BTUต่อชั่วโมง-ฟุต-°F)² วิศวกร ต้องการสร้างช่วงกวามเชื่อมั่น 95% ของค่าการเหนี่ยวนำความร้อนของเหล็กArmco เขาจึงนำเหล็ก Armco จำนวน10 ตัวอย่างมาทคลองที่อุณหภูมิ 100 °F และกำลังไฟฟ้า 550 วัตต์ แล้ววัคค่าการ เหนี่ยวนำความร้อนได้ดังนี้

41.60 41.48 42.34 41.95 41.86 42.18 41.72

42.26 41.81 42.04 (หน่วยเป็น BTUต่อชั่วโมง-ฟุต-°F)

จากข้อมูลการทคลอง จงสร้างช่วงความเชื่อมั่น 95% ของค่าการเหนี่ยวนำความร้อนของเหล็ก

Armco

🛗 ES	ESTIMATION EX1.MTW ***							
+	C1	C1 C2 C3 C4 C5						
	BTU							
1	41.60							
2	41.48							
3	42.34							
4	41.95							
5	41.86							
6	42.18							
7	41.72							
8	42.26							
9	41.81							
10	42.04							
11								

1. สร้าง Worksheet ใหม่ และใส่ข้อมูลทั้ง 10 ค่า ลงใน C1 ตั้งชื่อ column เป็น BTU

- เลือกคำสั่ง Stat > Basic Statistics > 1-Sample Z
- 3. ที่หน้าต่าง 1-Sample Z

📵 เลือกที่ Samples in columns

2 double click ที่ C1 ที่ช่องซ้ายมือ จะปรากฏ ชื่อ BTU ขึ้นที่ช่องใต้ Samples in

columns:

	ESTIMATION	EX1.MTW	***			
• •	C1	C2	C3		OF I	
	BTU			1-Sample	Z (Test and Co	onfidence Interval)
1	41.60			C1	BTII	Samples in columns:
2	41.48			0.	510	
3	42.34					
4	41.95					•
5	41.86					
6	42.18					C Summarized data
7	41.72					S <u>a</u> mple size:
8	42.26					Mean:
9	41.81					
10) 42.04					
11						
12	2					Standard deviation:
13	3					
14	1					Test mean: (required for test)
15	5					
16	ì				0-1	Oranta Ordinar
17	,				Select	G <u>r</u> aphs Options
18	3			Hel	n	OK Cancel
19	9				P	

- 4. ใส่ค่า Standard deviation = 0.3 ไม่ต้องใส่ค่า Test mean เพราะไม่ใช่การทดสอบ สมมุติฐาน และคลิกที่ **Options...**
- ที่หน้าต่าง 1-Sample Z-Option ใส่ค่า Confidence level = 95.0

6. ที่ช่อง Alternative เลือก not equal เพราะเป็นการประมาณค่าแบบสองค้าน จากนั้น คลิก

OK ที่หน้าต่าง 1-Sample Z-Option และที่หน้าต่าง 1-Sample Z

1-Sample Z (Test and Con	fidence Interval)	
	© Samples in <u>c</u> olumns: BTU	, , , , , , , , , , , , , , , , , , ,
	C Summarized data	1-Sample Z - Options
	S <u>a</u> mple size:	Confidence level: 95.0
	Mean:	
	Standard deviation: 8.2	Alternative: not equal
	Test mean: (required for	Help <u>QK</u> Cancel
Select	G <u>r</u> aphs	Options
Help	<u>0</u> K	Cancel

7. ผลการประมาณค่าจะแสดงที่หน้าต่าง Session ดังนี้

Session						
* NOTE * C	omm	and cance	led.			
Results for:	ES	TIMATION	EX1.MTV	v		
One-Sampl	e Z:	BTU				
The assume	ed s	tandard d	eviation	= 0.3		
Variable BTU	N 10	Mean 41.9240	StDev 0.2841	SE Mean 0.0949	95% CI (41.7381, 42.1099)	
•						

นั้นคือที่ช่วงความเชื่อมั่น 95% ค่าการเหนี่ยวนำความร้อนของเหล็ก Armco มีค่า 41.7381≤µ≤ 42.1099 BTU ต่อชั่วโมง-ฟุต- °F

1.2 เมื่อประชากรมีการแจกแจงแบบปกติและไม่รู้ความแปรปรวน ประชากร(σ²)
ถ้าขนาดตัวอย่าง n มีค่าตั้งแต่ 30 ขึ้นไป (n ≥ 30) จะใช้ตัวสถิติ z ในการหาช่วงความเชื่อมั่น
ถ้าขนาดตัวอย่าง n มีค่าน้อยกว่า 30 (n < 30) จะใช้ตัวสถิติ t ในการหาช่วงความเชื่อมั่น

<u>ตัวอย่างที่2</u> ข้อมูลต่อไปนี้เป็นเวลา (หน่วยวินาที) ที่ใช้ในการเผาไหม้เชื้อเพลิงที่ใช้ในระบบยิงจรวด จากการทดลอง 20 ตัวอย่าง 9.85 9.93 9.75 9.77 9.67 9.87 9.67 9.94 9.85 9.75 9.83 9.92 9.74 9.99 9.88 9.95 9.95 9.93 9.92 9.89 จงหาช่วงความเชื่อมั่น 95% แบบสองค้านของค่าเฉลี่ยเวลาการเผาไหม้ของเชื้อเพลิง สมมติว่าเวลา การเผาไหม้ของเชื้อเพลิงมีการแจกแจงแบบปกติ

2. ช่วงความเชื่อมั่นของผลต่างค่าเฉลี่ยของสองประชากร($\mu_1 - \mu_2$) <u>ตัวอย่างที่3</u>

วิศวกรทำการทดลองวัดแรงดึงของอลูมิเนียม 2 ชนิด คือ เกรด A และเกรด B จากประสบการณ์ใน อดีต ทำให้ทราบว่าค่าเบี่ยงเบนมาตรฐานทั้งสอง การทดลองได้ผลดังนี้ เกรด A: n₁ = 10 \overline{X}_1 = 87.6 kg/mm² σ_1 = 1.0 kg/mm² เกรด B: n₂ = 12 \overline{X}_2 = 74.5 kg/mm² σ_2 = 1.5 kg/mm² จงสร้างช่วงกวามเชื่อมั่น 90% แบบสองด้านของผลต่างของก่าเฉลี่ยแรง ดึงของอลูมิเนียมเกรด A และเกรด B $\mu_1 - \mu_2$

2.1 เมื่อประชากรทั้งสองมีการแจกแจงแบบปกติแต่ใม่รู้ความแปรปรวนประชากร (σ_1^2, σ_2^2) ในการสร้างช่วงความเชื่อมั่น โดยแบ่งออกเป็นสองกรณี ดังนี้

2.2.1 ຊຶ່ງກ
$$\sigma_1^2$$
 = σ_2^2

<u>ตัวอย่างที่4</u> ระดับแคลเซี่ยมในปูนซึเมนต์มีความสำคัญต่อการผสมน้ำกับปูนซึเมนต์ ถ้าระดับแค ลเซี่ยมลดลง จะทำให้น้ำเข้าไปแทรกในโครงสร้างของปูนซึเมนต์ได้ดีขึ้น ผู้ผลิตปูนซึเมนต์ยี่ห้อ หนึ่งได้ทำการทดลองปูนซึเมนต์ 2 ประเภทคือ ปูนซึเมนต์มาตรฐานและปูนซึเมนต์ที่เติมสารตะกั่ว เพื่อวัดค่าเฉลี่ยของเปอร์เซ็นต์น้ำหนักของแคลเซี่ยม ซึ่งได้ผลดังนี้

แบบมาตรฐาน : $\mathbf{n}_1 = 10$ $\overline{\mathbf{X}}_1 = 90.0$ $\mathbf{S}_1 = 5.0$ แบบเติมสารตะกั่ว : $\mathbf{n}_2 = 15$ $\overline{\mathbf{X}}_2 = 87.0$ $\mathbf{S}_2 = 4.0$ สมมติว่าเปอร์เซ็นต์น้ำหนักของแคลเซี่ยมในปูนซีเมนต์ทั้ง 2 ประเภทมีการแจกแจงแบบปกติและมี ก่าเบี่ยงเบนมาตรฐานเท่ากัน จงหาช่วงกวามเชื่อมั่น 95 % แบบสองด้านของผลต่างของก่าเฉลี่ย เปอร์เซ็นต์น้ำหนักของแคลเซี่ยม $\mu_1 - \mu_2$ ของปูนซีเมนต์แบบมาตรฐานและแบบที่เติมสารตะกั่ว

การใช้โปรแกรม MiniTab ในการวิเคราะห์ความแปรปรวนแบบมีปัจจัยเดียว (Completely Randomized Single Factor ANOVA)

การใช้โปรแกรม MiniTab ช่วยในการวิเคราะห์ ความแปรปรวนแบบปัจจัยเคียวหรือตัว แปรเดียวว่ามีผลต่อหน่วยทคลองหรือไม่โดยวิเคราะห์ระดับของปัจจัย (treatment) มากกว่าสอง ระดับขึ้นไป โดยนำปัญหาในตัวอย่างที่ 2 ของบทที่ 8 จากเอกสารวิชาสถิติวิศวกรรมมาใช้แสดง ตัวอย่าง ซึ่งปัญหาคือ

<u>ตัวอย่างที่2</u>

ผู้ผลิตกระคาษต้องการทราบว่าความเข้มข้นของไม้เนื้อแข็งมีผลต่อแรงคึง (tensile strength) ของ กระคาษหรือไม่ เขาสนใจศึกษาความเข้มข้นของไม้เนื้อแข็งในช่วงระคับ 5% ถึง 20% เขาจึงเลือก ระคับความเข้มข้นของไม้เนื้อแข็งที่ 5% 10% 15% และ 20% แล้วทำการทคลองกับตัวอย่าง ทั้งหมด 24 ตัวอย่าง และวัดแรงดึงของกระคาษ(หน่วยเป็น psi)ได้คังตารางข้างล่างนี้ ใช้ ANOVA ในการทคสอบว่าความเข้มข้นของไม้เนื้อแข็งมีผลต่อค่าเฉลี่ยของแรงคึง (tensile strength) ของกระคาษหรือไม่ ที่ระคับนัยสำคัญ = 0.01

			•
5	10	15	20
7	12	14	19
8	17	18	25
15	13	19	22
11	18	17	23
9	19	16	18
10	15	18	20

ความเข้มข้นของไม้เนื้อแข็ง (%)

3.1 การใช้โปรแกรม MiniTab ในการวิเคราะห์ความแปรปรวนแบบมีปัจจัยเดียว

 เปิดโปรแกรม Minitab ตั้งชื่อ project ว่า Example ANOVA จากนั้น ให้ป้อนข้อมูลตัวเลขจาก ตัวอย่างข้างต้นลงใน worksheet 1 ดังแสดงในรูปที่ 1 จากนั้นตั้งชื่อ worksheet1 ว่า paper ตั้งชื่อ column ดังรูป

MINITAB - Example-ANOVA.MPJ							
<u>File E</u> dit D <u>a</u> ta <u>C</u> alc	<u>Fi</u> le <u>E</u> dit D <u>a</u> ta <u>C</u> alc <u>S</u> tat <u>G</u> raph E <u>d</u> itor <u>T</u> ools <u>W</u> indow <u>H</u> elp						
🗃 🖬 🎒 👗 🖻	6	n 🗠 📴 🕇	·↓ A & 6	9 🗊 🕴	🗟 🖸 🗟 🖥		
-=====================================	N Paste	e (Ctrl+V)		4			
Project Manager	_						
Example-ANOVA MP1	🏢 pa	per.MTW ***					
Session	÷	C1	C2	C3	C4		
History		hardwood 5	hardwood 10	hardwood 15	hardwood 20		
Graphs	1	7	12	14	19		
Related Documents	2	8	17	18	25		
Worksheets	3	15	13	19	22		
paper.MTW	4	11	18	17	23		
Constants	5	9	19	16	18		
Matrices	6	10	15	18	20		
	7						
1			94				

รูปที่ 1 worksheet ข้อมูลจากตัวอย่างที่ 2

2. เลือกคำสั่ง Stat > ANOVA > One-Way (Unstacked)

ในการวิเคราะห์ความแปรปรวนแบบมีปัจจัยเดียว จะมีคำสั่งสองแบบคือ > One-Way และ > One-Way (Unstacked) การเลือกคำสั่งใดขึ้นกับการจัดข้อมูลใน worksheet หากข้อมูลจัดเรียง แบบแยก column ดังแสดงในรูปที่ 1 ให้ผู้ใช้เลือกใช้คำสั่ง > One-Way (Unstacked) ดังแสดงในรูป ที่ 2 แต่หากข้อมูลจัดเรียงใน column เดียวกันดังแสดงในรูปที่ 3 ให้เลือกใช้คำสั่ง > One-Way

MINITAB - Example	e-ANOVA.MPJ		
<u>File E</u> dit D <u>a</u> ta <u>C</u> alc	<u>Stat</u> <u>Graph</u> Editor <u>T</u> ools	<u>W</u> indow <u>H</u> elp	
🖻 🖬 🎒 🐰 🖻	Basic Statistics	* 🗛 🔏 🚫 🕈 🗊 🕂 📾 🕻	🗟 🛈 🖻 🛙
- 	<u>R</u> egression	•	
	<u>A</u> NOVA	🕨 🄺 One-Way	
📕 Project Manager	DOE	One-Way (Unstacked)	
Example-ANOVA.MPJ	Control Charts	• <u>T</u> wo-Way	
Session	Quality Tools	Analysis of Means	C4
History	Reliability/Survival	A0V Balanced ANOVA	wood 20
ReportPad	Multivariate	GLM General Linear Model	19
📄 Related Document	- Time Series		25
Worksheets			22
paper.MIW	<u>T</u> ables	A0V Balanced MANOVA	23
Constants	Nonparametrics	GLM Gene <u>r</u> al MANOVA	18
Matrices	<u>E</u> DA	m ² =. Toob for Found Variances	20
	Power and Sample Size	► T a state to Equal Variances	
	8	II Interval Plot	
	9	Main Effects Plot	
	10	Interactions Plot	
l Id	a	~	

Anova-example1-2.MTW ***					
Ŧ	C1-T	C2			
	%Hardwood	PSI			
1	hardwood 5	7			
2	hardwood 5	8			
3	hardwood 5	15			
4	hardwood 5	11			
5	hardwood 5	9			
6	hardwood 5	10			
7	hardwood10	12			
8	hardwood10	17			
9	hardwood10	13			
10	hardwood10	18			
11	hardwood10	19			
12	hardwood10	15			
13	hardwood15	14			
14	hardwood15	18			
15	hardwood15	19			
16	hardwood15	17			
17	hardwood15	16			
18	hardwood15	18			
19	hardwood20	19			
20	hardwood20	25			
21	hardwood20	22			
22	hardwood20	23			
23	hardwood20	18			
04	hardwaad20	20			

รูปที่ 3 การป้อนข้อมูลตัวแปรใน column เดียว

 เมื่อเลือกคำสั่งแล้ว โปรแกรมจะแสดงกล่องโต้ตอบดังแสดงในรูปที่ 4 เพื่อให้ผู้ใช้ป้อนข้อมูล ตัวแปรตอบสนอง (Responses) และค่าระดับความเชื่อมั่น ในตัวอย่างนี้ ให้ผู้ใช้

O double click ที่ ชื่อ column ทุกชื่อ ทุกครั้งที่ double click ชื่อ column จะปรากฏขึ้นใน ช่อง Responses (in separate columns):

ตัวอย่างนี้โจทย์กำหนดให้วิเคราะห์ที่ระดับนัยสำคัญ = 0.01 นั้นคือระดับความเชื่อมั่น
 = 1-0.01 = 0.99 (99.0%) จึงป้อนข้อมูล Confidence level = 99.0

One-Way C1 C2 C3 C4	Analysis of Vari hardwood 5 hardwood 10 hardwood 20 hardwood 20	Ance Responses (in separate columns): 'hardwood 5' 'hardwood 10' 'hardwood 15' 'hardwood 20' Store residuals Store fits Confidence level:
	Select	Comparisons Graphs OK Cancel

รูปที่ 4 การป้อนข้อมูลตัวแปรตอบสนองและระคับความเชื่อมั่น

4. เมื่อป้อนข้อมูลตอบสนองแล้วให้ **1** click ที่ Graphs และ **2** click ที่ Three in one เพื่อให้ โปรแกรมแสดง กราฟ จากนั้น click OK ที่ **3** และ **4**

One-Way Analysis of Vari	ance	One-Way Analysis of Variance - Graphs
	Responses (in separate colu 'hardwood 5' 'hardwood 'hardwood 15' 'hardwood	 Individual value plot Boxplots of data
	 Store residuals Store fits Confidence level: 99.8 	Residual Plots C Individual plots Histogram of residuals Normal plot of residuals Residuals versus fits Three in one
L		Help OK Cancel
Select Help	Comparisons OK	Graphs Cancel

รูปที่ 5 การเลือกให้โปรแกรมสร้างกราฟ

5. โปรแกรมจะวิเคราะห์และแสดงผลใน window ชื่อ Session ผลที่ได้แสดงในรูปที่ 6 และกราฟที่ ได้แสดงในรูปที่ 7

หรือไม่

จากรูปที่ 6 สามารถแปลผลได้ดังนี้

ป แสดงตาราง ANOVA ได้ค่า F = 19.61

②อ่านก่า P-Value พบว่าได้ก่าน้อยมาก คือ 0.000 < α (0.01) จึงปฏิเสธสมมุติฐานหลัก และสรุป ได้ว่าความเข้มข้นของไม้เนื้อแข็ง มีผลต่อก่าเฉลี่ยของแรงดึงของกระดาษ อย่างมีนัยสำคัญ = 0.01

รูปที่ 6 กราฟแสดงการวิเคราะห์เศษเหลือ (Residual)

จากกราฟในรูปที่ 6 **O**Normal Probability Plot of the Residuals แสดงเส้นตรง 1 เส้น และ **2** Histogram แสดงรูปทรงระฆังกว่ำ แสดงว่าข้อมูลมาจากการทดลองที่มี setting ค่อนข้างดี

 6. จากผลการวิเคราะห์ สรุปได้ว่าความเข้มข้นของไม้เนื้อแข็ง มีผลต่อค่าเฉลี่ยของแรงดึงของ กระดาษ อย่างมีนัยสำคัญ= 0.01

3.2 การวิเคราะห์ความแปรปรวนเนื่องจากสองปัจจัย (Two-Factor Factorial Experiments: Two variables)

<u>ตัวอย่าง</u> สีรองพื้นที่ใช้ทาพื้นผิวอลูมิเนียมสามารถทาได้ 2 วิธี คือวิธีการจุ่มและวิธีสเปรย์ วัตถุประสงค์ของสีรองพื้นนี้ก็เพื่อเพิ่มการยึดเกาะของสีที่จะทับลงไปอีกครั้งหนึ่ง วิศวกรต้องการที่ จะศึกษาว่าสีรองพื้น 3 ชนิดที่แตกต่างกันและวิธีการทาสีทั้งสองวิธีดังกล่าว มีผลต่อการยึดเกาะของ สีที่จะทาทับลงไปหรือไม่ เขาจึงออกแบบการทดลองแบบ two-factor factorial design โดยการทาสี รองพื้นแต่ละชนิด ด้วยแต่ละวิธี ลงบนตัวอย่างชิ้นงานอลูมิเนียมอย่างละ 3 ตัวอย่าง จากนั้นจึงทาสี ทับลงไปและวัดแรงยึดเกาะ ได้ข้อมูลดังตารางข้างล่างนี้

	ч			
	1	2	3	
วิธีการจุ่ม (วิธีที่ 1)	4.0	5.6	3.8	
	4.5	4.9	3.7	
	4.3	5.4	4.0	
วิธีการสเปรย์ (วิธีที่ 2)	5.4	5.8	5.5	
	4.9	6.1	5.0	
	5.6	6.3	5.0	

จงวิเคราะห์ข้อมูลที่ได้จากการทดลองและสรุปผลด้วยวิธี ANOVA กำหนดให้ระดับ นัยสำคัญ α = 0.05 ให้เปิด worksheet ใหม่ โดยเลือกคำสั่ง file>new>Minitab worksheet จากนั้นป้อนข้อมูลตัวเลข จากตัวอย่างข้างต้นลงใน worksheet ดังแสดงในรูป จากนั้นตั้งชื่อ worksheet ว่า "สีรองพื้น" ตั้งชื่อ column ดังรูป

E Session		III a	รองพื้น.MTW	***		
		÷	C1	C2	C3	C4
10/6/2010	11:02:23		แรงยึดเกาะ	วิธีทาสี	ชนิดของสี	
Welcome to Minitab press F1 for belo		1	4.0	1	1	
Welcome to Minitat), press F1 for help.	2	4.5	1	1	
			4.3	1	1	
		4	5.6	1	2	
		5	4.9	1	2	
		6	5.4	1	2	
		7	3.8	1	3	
📰 Project Manager		8	3.7	1	3	
anova.MPJ	Session	9	4.0	1	3	
Session	壹 10/6/2010 11:02:23	10	5.4	2	1	
Graphs		11	4.9	2	1	
ReportPad		12	5.6	2	1	
Related Documents		13	5.8	2	2	
ANOVA EX3.MTW		14	6.1	2	2	
Columns		15	6.3	2	2	
Constants		16	5.5	2	3	
🦲 Matrices		17	5.0	2	3	
Columns		18	5.0	2	3	

2. เลือกคำสั่ง Stat > ANOVA > Two-Way

DINITAB - anova.M	PJ						
<u> </u>	<u>Stat Graph Editor T</u> oo	ls <u>W</u> indow <u>H</u> e	lp				
🗃 🖬 🎒 👗 🖻	Basic Statistics	· # #	0 ? 🗊				
	<u>R</u> egression	▶	1 21 1.0	2 12	1		
	<u>A</u> NOVA	🔜 🏄 <u>O</u> ne-W	/ay				
E Session	DOE	🕨 🍂 One-W	/ay (<u>U</u> nstacked)	*		
	<u>C</u> ontrol Charts	Image: Two-M	/ay		C2	C3	C4
10/6/21	<u>Q</u> uality Tools	ト 日本 Analys	is of Means		มิธีทาสี	ชนิดของสี	
Walcoma ta Mini	Reliability/Survival	AOV Balance	ed ANOVA		1	1	
WEICOME CO MINI	<u>M</u> ultivariate	GLM Genera	al Linear Model.		1	1	
	Time <u>S</u> eries	► Eally N	lested ANOVA.		1	1	
	<u>T</u> ables	M Ralanc			1	2	
	Nonparametrics	AOV Dajaric			1	2	
	EDA	► GLM Gener	BI MANOVA		1	2	
	Power and Sample Size	e 🕨 💏 Test fo	or Equal <u>V</u> ariand	es	1	3	
	- I	II Interv	al Plot		1	3	
Session	Session		ffects Plot		1	3	
History	10/0/2010	Intera	ctions Plot		2	1	
Graphs		<u>100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100</u>	п	4.9	2	1	
ReportPad	8		12	5.6	2	1	
E Worksheets			13	5.8	2	2	
ANOVA EX3.MT	W		14	6.1	2	2	

3. โปรแกรมจะปรากฏหน้าต่าง Two-Way Analysis of Variance

Two-Way Analysis of Var	iance		X			
C1 แรงยึดเกาะ C2 วิธีทาส	Response:	'แรงย ึดเกาะ '				
63 ชนาตบองสา	Row factor:	່ວ໊5໊ກາສ໊່	🔲 Display means			
	Column factor:	ี ' หน้าดบองส์ "	🔲 Display means			
	☐ Store residuals ☐ Store fits					
	Confidence leve	el: 95.0				
Select	📕 Fit additive r	nodel	Graphs			
Неір		ОК	Cancel			

- ① คลิกเลือก column แรงยึดเกราะ ที่ช่อง Response
- 2 คลิกเลือก column วิธีทาสี ที่ช่อง Row factor
- 3 คลิกเลือก column ชนิดของสี ที่ช่อง Column factor
- ④ จากนั้น คลิก ______ ок

4. ผลการคำนวณจะถูกแสดงที่หน้าต่าง Session

E Session						
Results for: สีรองพื้น.MTW						
Two-way ANO	VA: I	เรงยึ ด เกาะ ∨(ersus วิธีทาล์	สี, ชนิดของ	าสี	
Source	DF	SS	MS	F	Р	
ว โธ "ทาส "	1	4.9089	4.90889	59.70	0.000	
ชน ีดของส <i>ี</i>	2	4.5811	2.29056	27.86	0.000	
Interaction	2	0.2411	0.12056	1.47	0.269	
Error	12	0.9867	0.08222			
Total	17	10.7178				
S = 0.2867	R-S	q = 90.79	% R-Sq(adj) =	86.96%	

สำหรับปัจจัยวิธีทาสีรองพื้น P-Value พบว่าได้ค่าน้อยมาก คือ 0.000 < α (0.05) จึงปฏิเสษ สมมุติฐานหลัก และสรุปได้ว่าวิธีการทาสีรองพื้นที่ต่างกัน มีผลต่อค่าเฉลี่ยของแรงยึดเกาะ อย่างมี นัยสำคัญ = 0.05 สำหรับปัจจัยชนิดของสีรองพื้น P-Value พบว่าได้ค่าน้อยมาก คือ 0.000 < α (0.05) จึง ปฏิเสธสมมุติฐานหลัก และสรุปได้ว่าชนิดของสีรองพื้นที่ต่างกัน มีอิทธิพลต่อค่าเฉลี่ยของแรงยึด เกาะ อย่างมีนัยสำคัญ = 0.05

สำหรับปัจจัย interaction ระหว่างวิธีทาสีรองพื้นและชนิดของสี P-Value พบว่าได้ค่ามาก คือ 0.629 > α (0.05) จึงไม่มีหลักฐานเพียงพอที่จะปฏิเสธสมมุติฐานหลัก จึงสรุปได้ว่า **ไม่มี** interaction ระหว่างวิธีทาสีรองพื้นและชนิดของสี รองพื้น

4. การใช้โปรแกรม MiniTab ในการวิเคราะห์ความถดถอยและสหสัมพันธ์

การวิเคราะห์ความถดถอยและสหสัมพันธ์ เป็นวิธีการทางสถิติที่ใช้สร้างสมการเส้นตรงที่ แสดงความสัมพันธ์ระหว่างตัวแปรสองตัวหรือมากกว่า ซึ่งประกอบตัวแปรตอบสนองหนึ่งตัว (Responses) และตัวแปรต้น (Predictors) อย่างน้อยหนึ่งตัว

<u>ตัวอย่าง</u> แรงดึงของกระคาษที่ใช้ในการผลิตกล่องกระคาษแข็งมีความสัมพันธ์กับเปอร์เซ็นต์ความ เข้มข้นของไม้เนื้อแขึงที่ใช้เป็นวัตถุดิบ โรงงานผลิตกล่องกระคาษแข็งได้ทำการทคลองกับตัวอย่าง 16 ตัวอย่างภายใต้สภาวะควบคุมและวัดค่าแรงดึง ได้ข้อมูลดังต่อไปนี้

แรงคึ่งของกระคาษ	101.4	117.4	117.1	106.2	131.9	146.9	146.8	133.9
(psi)								
%กวามเข้มข้น	1.0	1.5	1.5	1.5	2.0	2.0	2.2	2.4

แรงดึงของกระดาษ	111.0	123.0	125.1	145.2	134.3	144.5	143.7	146.9
(psi)								
%ความเข้มข้น	2.5	2.5	2.8	2.8	3.0	3.0	3.2	3.3

ให้หาสมการเส้นตรงถดถอยที่แสดงความสัมพันธ์ระหว่างแรงดึงของกระดาษและเปอร์เซ็นต์ความ เข้มข้นของไม้เนื้อแขึง 1. ป้อนข้อมูลตัวเลขจากตัวอย่างข้างต้นลงใน worksheet 1 ดังแสดงในรูปที่ 1 จากนั้นตั้งชื่อ worksheet1 ว่า regression ex1

Ŧ	C1	C2	C3	C4	C5
	แรงคึงของกระดาษ	ความเข้มข้นของไม้เนื้อแข็ง			
1	101.4	1.0			
2	117.4	1.5			
3	117.1	1.5			
4	106.2	1.5			
5	131.9	2.0			
6	146.9	2.0			
7	146.8	2.2			
8	133.9	2.4			
9	111.0	2.5			
10	123.0	2.5			
11	125.1	2.8			

เลือกคำสั่ง Stat > Regression > Regression

 โปรแกรมจะแสดงกล่องโต้ตอบดังแสดงในรูปที่ 4 เพื่อให้ผู้ใช้ป้อนข้อมูลตัวแปรตอบสนอง (Responses) และตัวแปรต้น (Predictors) ให้ผู้ใช้

double click ที่ column C1 ให้ปรากฏขึ้นในช่อง Responses

double click ที่ column C2 ให้ปรากฏขึ้นในช่อง Predictors จากนั้นจึง click

Regression			
C1 แรงดึงของกร C2 ความเขีมขีเ	Response: Predictors:	รงดึงของกระดาษ' 'ความเขับขันของไบ้	נ ע ^{בשי} פונט ^ב א י
Select		Graphs Results	Options Storage
Help		ОК	Cancel

4. โปรแกรมจะวิเคราะห์และแสดงผลใน window ชื่อ Session

E Session

8/6/2010 13:55:17 -----

Welcome to Minitab, press F1 for help.

Results for: regression ex1.MTW

Regression Analysis: แรงคึงของกระคาษ versus ความเข้มข้นของไม้เนื้อแข็ง

1

The regression equation is แรงดึงข้องกระดาษ = 93.3 + 15.6 ความเข้มข้นของไม้เน‴้อแข้ง

Predictor Coef SE Coef т 93.34 Constant 0.000 10.55 8.85 ความเข้มข้นของไม้เน‴้อแขึ่ง 15.641 4.360 3.59 0.003 (2)(3) R-Sq(adj) = 44.2% S = 11.6736R-Sa = 47.9%

Analysis of Variance

Source	DF	55	MS	F	Р
Regression	1	1754.1	1754.1	12.87	0.003
Residual Error	14	1907.8	136.3		
Total	15	3661.9			

สามารถแปลผลได้ดังนี้

① สมการถดถอยแสดงความสัมพันธ์โดยเฉลี่ย ระหว่างแรงดึงของกระดาษกับความเข้มข้นของไม้ เนื้อแขึ่ง คือ Y= 93.3 + 15.6 X

② ค่า R-Sq = 47.9% ความผันแปรของข้อมูลแรงคึงของกระคาย อธิบายได้ด้วยความเข้มข้นของ ้ไม้เนื้อแข็งเท่ากับ 47.9 โดยปริมาณที่เหลือไม่สามารถอธิบายได้ว่ามาจากแหล่งความผันแปรใด 3 ค่า R-Sq (adj) = 44.2 มีค่าใกล้เคียงกับ ค่า R-Sq แสดงว่าจำนวนข้อมูลมีเพียงพอ

Р

แบบฝึกหัด ให้นักสึกษาตอบคำถามดังต่อไปนี้โดยบันทึก file ในรูปแบบ File>save project as>รหัสนักศึกษา_stat.MPJ ใน file ที่ส่งให้ประกอบไปด้วย ทุก worksheet, และ แผนภาพที่นักศึกษาสร้างขึ้น การตอบคำถาม ทุกข้อให้ตอบองใน ReportPad และให้ save file ที่ต้องส่งองใน My document . โรงงานแห่งหนึ่งผลิตเส้นลวด 2 ชนิด วิศวกรด้องการเปรียบเทียบความด้านทานแรงดึงของเส้น ลวดทั้งสองชนิดซึ่งมีการแจกแจงแบบปกติ เขาจึงสุ่มเส้นลวดชนิดที่1 และ 2 มาจำนวน 10 เส้นและ 13 เส้น ตามลำดับ แล้ววัดความด้านทานแรงดึงหน่วยเป็นปอนด์ ได้ผลดังนี้ ชนิดที่1 : 23 25 25 28 19 31 35 30 26 27 ชนิดที่2 : 18 17 16 24 20 21 25 15 15 16 18 21 19 จงหาว่าเส้นลวดชนิดที่1 มีความด้านทานแรงดึงมากกว่าเส้นลวดชนิดที่ 2 หรือไม่ โดยการทดสอบ สมมุติฐาน ที่ระดับนัยสำคัญ 0.05

1.1 ຄ້າ รູ້ວ່າ $\sigma_1^2 = \sigma_2^2$ 1.2 ຄ້າ รູ້ວ່າ $\sigma_1^2 \neq \sigma_2^2$

 โรงงานแห่งหนึ่งผลิตวงแหวนที่ใช้สำหรับเครื่องยนต์ชนิดหนึ่ง จากข้อมูลในอดีตทราบว่า เส้นผ่าสูนย์กลางของวงแหวนมีการแจกแจงแบบปกติ มีค่าความแปรปรวนเท่ากับ 0.001 มิลลิเมตร วิสวกรสุ่มตัวอย่างวงแหวนที่ผลิตมา 15 ชิ้น แล้วหาค่าเฉลี่ยเส้นผ่าสูนย์กลางได้ 74.036 มิลลิเมตร จง ใช้วิธีการประมาณค่า เพื่อสร้างช่วงความเชื่อมั่น 99% แบบสองด้านของค่าเฉลี่ยเส้นผ่าสูนย์กลาง ของวงแหวนที่ผลิตโดยโรงงานแห่งนี้

3. บริษัทABC จำกัด ผลิตฮาร์ดดิสก์สำหรับคอมพิวเตอร์ ขั้นตอนการติดขดลวดทองแดงเข้ากับแขน ของหัวอ่านแผ่นดิสก์เป็นขั้นตอนการผลิตขั้นตอนหนึ่ง ในการติดขดลวดทองแดงเข้ากับแขนของ หัวอ่านแผ่นดิสก์จะใช้กาว Epoxy 1140 หลังจากติดขดลวดทองแดงเข้ากับแขนของหัวอ่าน แผ่นดิสก์แล้ว จะทำส่วนประกอบนี้เข้าเตาอบเพื่ออบที่อุณหภูมิ 180 °F เป็นเวลา 50 นาที วิศวกร ฝ่ายผลิตต้องการศึกษาว่าอุณหภูมิกับระยะเวลาที่ใช้อบมีผลต่อแรงเฉือน (shear strength) ณ ตำแหน่งที่ติดกาวยึดส่วนประกอบทั้งสองอย่างไร เขาจึงทำการทดลองแบบ factorial design ข้อมูล ของแรงเฉือนที่ได้จากการทดลองมีหน่วยเป็น psi แสดงดังตารางข้างล่างนี้

เวลาที่ใช้อบ		ପୁ	ณหภูมิที่ใ	ช้อบ (°F)	
(นาที)	150	180	200	250	300
30	20.3	19.5	22.1	17.6	23.6
	19.8	18.6	23	18.3	24.5
	21.4	18.9	22.4	18.2	25.1
40	21.6	20.1	20.1	19.5	17.6
	22.4	19.9	21	19.2	18.3
	21.3	20.5	19.8	20.3	18.1
50	19.8	19.6	22.3	19.4	22.1
	18.6	18.3	22	18.5	24.3
	21	19.8	21.6	19.1	23.8

จงวิเคราะห์ความแปรปรวนเพื่อทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของแรงฉือนที่ได้รับอิทธิพลจาก อุณหภูมิกับระยะเวลาที่ใช้อบ โดยที่ระดับนัยสำคัญเท่ากับ 0.05 พร้อมทั้งสรุปผลที่ได้จากการ วิเคราะห์

 โรงงานแห่งหนึ่งผลิตมอเตอร์โดยการประกอบชิ้นส่วนสองชิ้นเข้าด้วยกัน วิสวกรฝ่ายผลิตมีความ เชื่อว่าแรงเฉือนของรอยต่อชิ้นส่วนทั้งสอง มีความสัมพันธ์เชิงเส้นตรงกับอายุของชิ้นส่วนชิ้นที่ 1 ที่ ใช้ประกอบ เขาจึงเก็บข้อมูลมา 20 ตัวอย่าง ได้ผลดังตารางต่อไปนี้

แรงเฉือน (psi)	215	167	231	206	220	170	178
อายุของชิ้นส่วนที่ 1 (สัปคาห์)	15.5	23.7	8	17	5	19	24

แรงเฉือน (psi)	257	235	227	216	239	177	233
อายุของชิ้นส่วนที่ 1	2.5	7.5	11	13	3.7	25	9.7
(สัปดาห์)							

แรงเฉือน (psi)	176	205	241	220	265	175
อายุของชิ้นส่วนที่ 1 (สัปดาห์)	22	18	6	12.5	2	21.5

 จากข้อมูลที่ได้ จงหาสมการเส้นตรงถดถอยที่แสดงความสัมพันธ์ ระหว่างแรงเถือนของรอยต่อชิ้นส่วนทั้งสองและอายุของชิ้นส่วนชิ้นที่ 1

เอกสารอ้างอิง

- 1. เอกสารประกอบการสอนวิชาสถิติวิศวกรรม ผศ.คร.สมบัติสินธุเชาว์ 2553
- 2. สถิติสำหรับงานวิศวกรรม เล่ม 2 โดย กิติศักดิ์ พลอยพานิชเจริญ 2550 สำนักพิมพ์ ส.ส.ท.
- 3. กู่มือการใช้ Minitab โดย บริษัทโซลูชั่น เซ็นเตอร์ จำกัด 2552
- 4. Meet Minitab 15 โดย Minitab Inc. 2552