15-7 NOISE CONTROL

Source-Path-Receiver Concept

If you have a noise problem and want to solve it, you have to find out something about what the noise is doing, where it comes from, how it travels, and what can be done about it. A straightforward approach is to examine the problem in terms of its three basic elements: that is, sound arises from a source, travels over a path, and affects a receiver or listener [21].

The source may be one or any number of mechanical devices that radiate noise or vibratory energy. Such a situation occurs when several appliances or machines are in operation at a given time in a home or office.

The most obvious transmission path by which noise travels is simply a direct line-of-sight air path between the source and the listener. For example, aircraft flyover noise reaches an observer on the ground by the direct line-of-sight air path. Noise also travels along structural paths. Noise
can travel from one point to another via any one path or a combination of several paths. Noise from a washing machine operating in one apartment may be transmitted to another apartment along air passages such as open windows, doorways, corridors, or duct work. Direct physical contact of the washing machine with the floor or walls sets these building components into vibration. This vibration is transmitted structurally throughout the building, causing walls in other areas to vibrate and to radiate noise.

The receiver may be, for example, a single person, a classroom of students, or a suburban community.

Solution of a given noise problem might require alteration or modification of any or all of these three basic elements:

1. Modifying the source to reduce its noise output
2. Altering or controlling the transmission path and the environment to reduce the noise level reaching the listener
3. Providing the receiver with personal protective equipment

Control of Noise Source by Design

Reduce Impact Forces. Many machines and items of equipment are designed with parts that strike forcefully against other parts, producing noise. Often, this striking action or impact is essential to the machine's function. Several steps can be taken to reduce noise from impact forces. The particular remedy to be applied will be determined by the nature of the machine in question.

A few of the more obvious design modifications are

1. Reduce the weight, size, or height of fall of the impacting mass.
2. Cushion the impact by inserting a layer of shock-absorbing material between the impacting surfaces. In some situations, you could insert a layer of shock-absorbing material behind each of the impacting heads or objects to reduce the transmission of impact energy to other parts of the machine.
3. Whenever practical, one of the impact heads or surfaces should be made of nonmetallic material to reduce resonance (ringing) of the heads.
4. Substitute the application of a small impact force over a long period for a large force over a short period to achieve the same result.
Reduce Speeds and Pressures. Reducing the speed of rotating and moving parts in machines and mechanical systems results in smoother operation and lower noise output. Likewise, reducing pressure and flow velocities in air, gas, and liquid circulation systems lessens turbulence, resulting in decreased noise radiation. Some specific suggestions that may be incorporated in design are discussed the following sections.
Reduce Frictional Resistance. Reducing friction between rotating, sliding, or moving parts in mechanical systems frequently results in smoother operation and lower noise output. Similarly, reducing flow resistance in fluid distribution systems results in less noise radiation. Four of the more important factors that should be checked to reduce frictional resistance in moving parts are alignment, polish, balance, and eccentricity (out-of-roundness).
Reduce Radiating Area. Generally speaking, the larger the vibrating part or surface, the greater the noise output. The rule of thumb for quiet machine design is to minimize the effective radiating surface areas of the parts without impairing their operation or structural strength. This can be done by making parts smaller, removing excess material, or by cutting openings, slots, or perforations in the parts. For example, replacing a large, vibrating sheet-metal safety guard on a machine with a guard made of wire mesh or metal webbing might result in a substantial reduction in noise because of the drastic reduction in surface area of the part.
Reduce Noise Leakage. In many cases, machine cabinets can be made into rather effective soundproof enclosures through simple design changes and the application of some
sound-absorbing treatment. Substantial reductions in noise output may be achieved by adopting some of the following recommendations:
5. All unnecessary holes or cracks, particularly at joints, should be caulked.
6. All electrical or plumbing penetrations of the housing or cabinet should be sealed with rubber gaskets or a suitable nonsetting caulk.
7. If practical, all other functional or required openings or ports that radiate noise should be covered with lids or shields edged with soft rubber gaskets to achieve an airtight seal.
8. Other openings required for exhaust, cooling, or ventilation purposes should be equipped with mufflers or acoustically lined ducts.
9. Openings should be directed away from the operator and other people.

Isolate and Dampen Vibrating Elements. In all but the simplest machines, the vibrational energy from a specific moving part is transmitted through the machine structure, forcing other component parts and surfaces to vibrate and radiate sound-often with greater intensity than that generated by the originating source itself.

Generally, vibration problems can be considered in two parts. First, we must prevent energy transmission between the source and surfaces that radiate the energy. Second, we must dissipate or attenuate the energy somewhere in the structure. The first part of the problem is solved by isolation. The second part is solved by damping.

The most effective method of vibration isolation involves the resilient mounting of the vibrating component on the most massive and structurally rigid part of the machine. Damping material or structures are those that have some viscous properties. They tend to bend or distort slightly, thus consuming part of the noise energy in molecular motion. The use of spring mounts on motors and laminated galvanized steel and plastic in air-conditioning ducts are two examples.

Provide Mufflers or Other Silencers. There is no real distinction between mufflers and silencers. They are often used interchangeably. They are, in effect, acoustical filters and are used when fluid flow noise is to be reduced. The devices can be classified into two fundamental groups: absorptive and reactive mufflers. An absorptive muffler is one whose noise reduction is determined mainly by the presence of fibrous or porous materials, which absorb the sound. A reactive muffler is one whose noise reduction is determined mainly by geometry. It is shaped to reflect or expand the sound waves with resultant self-destruction.

Although several terms are used to describe the performance of mufflers, the most frequently used appears to be insertion loss (IL). Insertion loss is the difference between two sound pressure levels that are measured at the same point in space before and after a muffler has been inserted. Because each muffler IL is highly dependent on the manufacturer's selection of materials and configuration, we will not present general IL prediction equations.

Noise Contral in the Transmission Path

After you have tried all possible ways of controlling the noise at the source, your next line of defense is to set up devices in the transmission path to block or reduce the flow of sound energy before it reaches your ears. This can be done in several ways: (1) absorb the sound along the path, (2) deflect the sound in some other direction by placing a reflecting barrier in its path, or (3) contain the sound by placing the source inside a sound-insulating box or enclosure.

Selection of the most effective technique will depend on various factors, such as the size and type of source, intensity and frequency range of the noise, and the nature and type of environment.

Separation. We can make use of the absorptive capacity of the atmosphere, as well as divergence, as a simple, economical method of reducing the noise level. Air absorbs high-frequency sounds more effectively than low-frequency sounds. However, if enough distance is available, even low-frequency sounds will be absorbed appreciably.

If you can double your distance from a point source, you will have succeeded in lowering the sound pressure level by 6 dB . It takes about a $10-\mathrm{dB}$ drop to halve the loudness. If you have to contend with a line source such as a railroad train, the noise level drops by only 3 dB for each doubling of distance from the source. The main reason for this lower rate of attenuation is that line sources radiate sound waves that are cylindrical in shape. The surface area of such waves only increases twofold for each doubling of distance from the source. However, when the distance from the train becomes comparable to its length, the noise level will begin to drop at a rate of 6 dB for each subsequent doubling of distance.

Indoors, the noise level generally drops only from 3 to 5 dB for each doubling of distance in the near vicinity of the source. However, farther from the source, reductions of only 1 or 2 dB occur for each doubling of distance due to the reflections of sound off hard walls and ceiling surfaces.

Absorbing Materials. Noise, like light, will bounce from one hard surface to another. In noise control work, this is called reverberation. If a soft, spongy material is placed on the walls, floors, and ceiling, the reflected sound will be diffused and soaked up (absorbed).

Sound-absorbing materials such as acoustical tile, carpets, and drapes placed on ceiling, floor, or wall surfaces can reduce the noise level in most rooms by about 5-10 dB for high-frequency sounds, but only $2-3 \mathrm{~dB}$ for low-frequency sounds. Unfortunately, such treatment provides no protection to an operator of a noisy machine who is in the midst of the direct noise field. For greatest effectiveness, sound-absorbing materials should be installed as close to the noise source as possible.

Because of their light weight and porous nature, acoustical materials are ineffectual in preventing the transmission of either airborne or structure-borne sound from one room to another. In other words, if you can hear people walking or talking in the room or apartment above, installing acoustical tile on your ceiling will not reduce the noise transmission.

Acoustical Lining. Noise transmitted through ducts, pipe chases, or electrical channels can be reduced effectively by lining the inside surfaces of such passageways with sound-absorbing materials. In typical duct installations, noise reductions on the order of $10 \mathrm{~dB} \cdot \mathrm{~m}^{-1}$ for an acoustical lining 2.5 cm thick are well within reason for high-frequency noise. A comparable degree of noise reduction for the lower frequency sounds is considerably more difficult to achieve because it usually requires at least a doubling of the thickness or the length of acoustical treatment.

Barriers and Panels. Placing barriers, screens, or deflectors in the noise path can be an effective way of reducing noise transmission, provided that the barriers are large enough in size, and depending on whether the noise is high or low frequency. High-frequency noise is reduced more effectively than low frequency.

The effectiveness of a barrier depends on its location, its height, and its length. Referring to Figure 15-32, we can see that the noise can follow four different paths.

First, the noise follows a direct path to receivers who can see the source well over the top of the barrier. The barrier does not block their line of sight and therefore provides no attenuation. No matter how absorptive the barrier is, it cannot pull the sound downward and absorb it.

FIGURE 15-32

Noise paths from a source to a receiver. (Source: National Cooperative Highway Research Program 174, 1976.)

Second, the noise follows a diffracted path to receivers in the shadow zone of the barrier. The noise that passes just over the top edge of the barrier is diffracted (bent) down into the apparent shadow zone in the figure. The larger the angle of diffraction, the more the barrier attenuates the noise in this shadow zone. In other words, less energy is diffracted through large angles than through smaller ones.

Third, in the shadow zone, the noise transmitted directly through the barrier may be significant in some cases. For example, with extremely large angles of diffraction, the diffracted noise may be less than the transmitted noise. In this case, the transmitted noise compromises the performance of the barrier. It can be reduced by constructing a heavier barrier. The allowable amount of transmitted noise depends on the total barrier attenuation desired. More is said about this transmitted noise later.

The fourth path shown in Figure 15-32 is the reflected path. After reflection, the noise is of concern only to a receiver on the opposite side of the source. For this reason, acoustical absorption on the face of the barrier may sometimes be considered to reduce this reflected noise; however, this treatment will not benefit any receivers in the shadow zone. It should be noted that in most practical cases the reflected noise does not play an important role in barrier design. If the source of noise is represented by a line of noise, another short-circuit path is possible. Part of the source may be unshielded by the barrier. For example, the receiver might see the source beyond the ends of the barrier if the barrier is not long enough. This noise from around the ends may compromise, or short-circuit, barrier attenuation. The required barrier length depends on the total net attenuation desired. When $10-15-\mathrm{dB}$ attenuation is desired, barriers must, in general, be very long. Therefore, to be effective, barriers must not only break the line of sight to the nearest section of the source but also to the source far up and down the line.

Of these four paths, the noise diffracted over the barrier into the shadow zone represents the most important parameter from the barrier design point of view. Generally, the determination of barrier attenuation or barrier noise reduction involves only calculation of the amount of energy diffracted into the shadow zone.
Enclosures. Sometimes it is much more practical and economical to enclose a noisy machine in a separate room or box than to quiet it by altering its design, operation, or component parts. The walls of the enclosure should be massive and airtight to contain the sound. Absorbent lining on the interior surfaces of the enclosure will reduce the reverberant buildup of noise within it. Structural contact between the noise source and the enclosure must be avoided, so that the source vibration is not transmitted to the enclosure walls, thus short-circuiting the isolation.

Control of Noise Source by Redress

The best way to solve noise problems is to design them out of the source. However, we are frequently faced with an existing source that, either because of age, abuse, or poor design, is a noise problem. The result is that we must redress, or correct, the problem as it currently exists. The following identify some measures that might apply if yot are allowed to tinker with the source: balance rotating parts; reduce frictional resistance; apply damping materials; seal noise leaks; and perform routine maintenance to repair mufflers, rough road surfaces, and so forth.

Protect the Receiver

When All Else Fails. When exposure to intense noise fields is required and none of the measures discussed so far is practical, as, for example, for the operator of a chain saw or pavement breaker, then measures must be taken to protect the receiver. The following two techniques are commonly employed.
Alter Work Schedule. Limit the amount of continuous exposure to high noise levels. In terms of hearing protection, it is preferable to schedule an intensely noisy operation for a short interval of time each day over a period of several days rather than a continuous 8 -h run for a day or two.

FIGURE 15-33

Attenuation of ear protectors at various frequencies. (Source: National Bureau of Standards Handbook, p. 119, 1976.)

In industrial or construction operations, an intermittent work schedule would benefit not only the operator of the noisy equipment, but also other workers in the vicinity. If an intermittent schedule is not possible, then workers should be given relief time during the day. They should take their relief time at a low-noise-level location and should be discouraged from trading relief time for dollars, paid vacation, or an "early out" at the end of the day!

Inherently noisy operations, such as street repair, municipal trash collection, factory operation, and aircraft traffic, should be curtailed at night and early morning to avoid disturbing the sleep of the community. Remember: operations between 10 P.m. and 7 A.m. are effectively 10 dBA higher than the measured value.

Ear Protection. Molded and pliable earplugs, cup-type protectors, and helmets are commercially available as hearing protectors. Such devices may provide noise reductions ranging from 15 to 35 dB (Figure 15-33). Earplugs are effective only if they are properly fitted by medical personnel. As shown in Figure 15-33, maximum protection can be obtained when both plugs and muffs are employed. Only muffs that have a certification stipulating the attenuation should be used.

These devices should be used only as a last resort, after all other methods have failed to lower the noise level to acceptable limits. Ear protection devices should be used while operating lawn mowers, mulchers, and chippers, and while firing weapons at target ranges. It should be noted that protective ear devices do interfere with speech communication and can be a hazard in some situations where warning calls may be a routine part of the operation (e.g., TIMBERRRR!). A modern ear-destructive device is a portable miniradio-recorder that uses earphones. In this "reverse" muff, high noise levels are directed at the ear without attenuation. If you can hear someone else's radio-recorder, that person is subjecting himself to noise levels in excess of $90-95 \mathrm{dBA}$!

