Example: Risk Assessment

An environmental scientist found the average concentration (C) of DDT contaminated in Prasak River 0.02 ng/mL and Chao Praya River 1.00 ng/mL. The people living near the river for 20 years (ED) usually use the water for cooking and drinking. From face to face interview, the average weight is 60 kg; the drinking rate (IR) is 1.2 L/day and the drinking frequency (EF) is 120 days/year. So they might be at risk associated with drinking water consumption from both rivers. You as a risk manager need to evaluate the exposure (ADD and LADD) and characterize the risk of both non-carcinogenic and carcinogenic effects from these rivers.

LADD _{FOT} draiting water in	• *	$\frac{C_{disting water} + IR_{disting water} + EF + ED}{AT}$ (Eq. 5)
where:		
LADD _{POT drinking water ing}	-	potential lifetime average daily dose from ingestion of contaminated drinking water (mg/kg-day);
C disking water	-	concentration of contaminant in drinking water (mg/mL);
IR drinking water	-	intake rate of drinking water (mL/kg-day);
EF	-	exposure frequency (days/year);
ED	-	exposure duration (years); and
AT	-	averaging time (days).

Note:

- 1. AT = averaging time (days) for non-carcinogenic effects, AT = ED and for carcinogenic effects, AT = 70 years or 25,550 days.
- 2. Unit: $1 \text{ ng/mL} = 10^{-3} \text{ mg/L}$

Prasak River

Calculation for non-carcinogenic Exposure Assessment $ADD = [C \times IR \times EF \times ED] / AT$ From the formula, ED = ATFor non-carcinogenic Therefore, $ADD = C \times IR \times EF$

Substitute,

 $= 0.02 \times 10^{-3}$ mg/L $\times 1.2/60$ L/kg.day $\times 120$ days/year $\times 1/365$ year/days ADD_{prasak} $= 1.32 \times 10^{-7} \, \text{mg/kg.day}$

Risk Characterization	
HI (Ratio)	= ADD/RfD
RfD _{DDT}	$= 5 \times 10^{-4}$ mg/kg.day

• ...

Substitute,

 $= (1.32 \times 10^{-7} \text{ mg/kg.day}) / (5 \times 10^{-4} \text{ mg/kg.day})$ HI $= 2.64 \times 10^{-4} \text{ or } 0.0003$

When HI < 1, therefore there is no risk for non-carcinogenic effect related to DDT in this case.

Calculation for Carcino	<u>genic</u>
Exposure Assessment	
From the formula,	$LADD = [C \times IR \times EF \times ED] / AT$
Substitute,	
LADD _{prasak}	= $[0.02 \times 10^{-3} \text{ mg/L} \times 1.2/60 \text{ L/kg.day} \times 120 \text{ days/year} \times 20 \text{ -years}] / 25,550 \text{ days}$
Ĩ	$= 3.76 \times 10^{-8}$ mg/kg.day
Risk Characterization	
Risk	$=$ LADD \times SF
SF_{DDT}	$= 3.4 \times 10^{-1}$ per mg/kg.day
Substitute,	

 $\begin{array}{ll} Risk &= 3.76 \times 10^{-8} \ \mbox{mg/kg.day} \times 3.4 \times 10^{-1} \ \mbox{per mg/kg.day} \\ &= 12.78 \times 10^{-9} \\ &= 0.012 \times 10^{-6} \ \mbox{or 0 person in a million} \\ Therefore, there is no risk for carcinogenic effect related to DDT in this case. \end{array}$

Calculation for non-carcinogenic

Exposure Assessment	
From the formula,	$ADD = [C \times IR \times EF \times ED] / AT$
For non-carcinogenic	ED = AT
Therefore,	$ADD = C \times IR \times EF$
Substitute,	
ADD _{prasak}	= 1×10^{-3} mg/L × 1.2/60 L/kg.day × 120 days/year × 1/365 year/days = 6.58×10^{-6} mg/kg.day
Risk Characterization	

ok Churacterization	
HI (Ratio)	= ADD/RfD
RfD_{DDT}	$= 5 \times 10^{-4}$ mg/kg.day

Substitute,

HI = $(6.58 \times 10^{-6} \text{ mg/kg.day}) / (5 \times 10^{-4} \text{ mg/kg.day})$ = 1.316×10^{-2} or 0.013

When HI < 1, therefore there is no risk for non-carcinogenic effect related to DDT in this case.

Calculation for Carcinogenic

Exposure Assessment	
From the formula,	$LADD = [C \times IR \times EF \times ED] / AT$
Substitute,	
LADD _{prasak}	= $[1 \times 10^{-3} \text{ mg/L} \times 1.2/60 \text{ L/kg.day} \times 120 \text{ days/year} \times 20 \text{ years}] / 25,550 \text{ days}$ = $1.87 \times 10^{-6} \text{ mg/kg.day}$
Risk Characterization	
Risk	$=$ LADD \times SF
SF_{DDT}	$= 3.4 \times 10^{-1}$ per mg/kg.day
Substitute,	
Risk	= 1.87×10^{-6} mg/kg.day $\times 3.4 \times 10^{-1}$ per mg/kg.day
	$= 6.358 \times 10^{-7}$
	= 1 person in a million or 6 persons in 10 million
Therefore, there is a risk	a for carcinogenic effect related to DDT 1 person in a million or 6 persons in 10

million.
