Dr.Chakkrit Umpuch

Department of Chemical Engineering

Ubon Ratchathani University

Example 2: Flow in Circular Pipe

(Set $\mathrm{M}=$ Momentum ($\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$), $\delta=$ Thickness of film (m), $\mathrm{V}_{\mathrm{z}}=$ Velocity $(\mathrm{m} / \mathrm{s})$ and $\mathrm{P}=$ Pressure $\left(\mathrm{N} / \mathrm{m}^{2}\right)$

Fig. 2 Flow in circular pipe in horizontal direction

Apply general law of conservation momentum (force balance)

Term 1
 Term 2
 Term 3

$\left(\begin{array}{l}\text { Rate of momentum in } \\ \text { Shell in z-direction } \\ \text { by convection }\end{array}\right)-\left(\begin{array}{l}\text { Rate of momentum } \\ \text { out shell in } z+\Delta z \\ \text { by convection }\end{array}\right)+\left(\begin{array}{l}\text { Rate of momentum } \\ \text { in shell in r-direction } \\ \text { by molecular diffusion }\end{array}\right)$

Term 4

Term 5

Term 6

For term $6=0$ (assume steady state system)

For term 1: Rate of momentum in shell at $\mathrm{z}=\mathrm{z}$ by convection

$$
\left.(\text { mass flow rate })\left(\mathrm{v}_{\mathrm{z}}\right)\right|_{\mathrm{z}=\mathrm{z}}=\left.\left(\rho \cdot \mathrm{v}_{\mathrm{z}} \cdot 2 \uparrow \mathrm{r} \cdot \Delta \mathrm{r}\right) \mathrm{v}_{\mathrm{z}}\right|_{\mathrm{z}=\mathrm{z}}
$$

For term 2: Rate of momentum out shell at $\mathrm{z}=\mathrm{z}+\Delta \mathrm{z}$ by convection (mass flow rate) $\left.\left(\mathrm{v}_{\mathrm{z}}\right)\right|_{z=\mathrm{z}+\Delta \mathrm{z}}=\left.\left(\rho \cdot \mathrm{v}_{\mathrm{z}} \cdot 2 \llbracket \mathrm{r} . \Delta \mathrm{r}\right) \mathrm{v}_{\mathrm{z}}\right|_{\mathrm{z}=\mathrm{z}+\Delta \mathrm{z}}$

For term 3: Rate of momentum in shell at $r=r$ by diffusion

$$
\left.(2 \llbracket \mathrm{r} . \Delta \mathrm{r}) \tau_{\mathrm{rz}}\right|_{\mathrm{r}=\mathrm{r}}
$$

For term 4: Rate of momentum out shell at $r=r+\Delta r$
$\left.(29 \mathrm{r} . \Delta \mathrm{r}) \tau_{\mathrm{rz}}\right|_{\mathrm{r}=\mathrm{r}+\Delta \mathrm{r}}$

For term 5: Sum of external forces acting on shell

Be careful with the sign of each term.

Because the flow is in horizontal, no gravitational force

Combine all terms

So, from momentum balance around shell

$$
\begin{array}{r}
\left.\left(\rho . v_{z} \cdot 2 \pi r \cdot \Delta r\right) v_{z}\right|_{z}-\left.\left(\rho \cdot v_{z} \cdot 2 \pi r \cdot \Delta r\right) v_{z}\right|_{z+\Delta z}+\left.(2 \pi r \cdot \Delta z) \tau_{r z}\right|_{r} \\
-\left.(2 \pi r . \Delta z) \tau_{r z}\right|_{r+\Delta r}+\left.(2 \pi r . \Delta r) P\right|_{z}-\left.(2 \pi r \cdot \Delta r) P\right|_{z+\Delta z}=0
\end{array}
$$

Divided through by 2q $\Delta r \Delta z$
$-\left(\frac{\left.r \rho v_{z}^{2}\right|_{z+\Delta z}-\left.r \rho v_{z}^{2}\right|_{z}}{\Delta z}\right)-\left(\frac{\left.r \tau_{r z}\right|_{r+\Delta r}-\left.r \tau_{r z}\right|_{r}}{\Delta r}\right)-\left(\frac{\left.r P\right|_{z+\Delta z}-\left.r P\right|_{z}}{\Delta z}\right)=0$

Set limit $\Delta \mathbf{r} \rightarrow \mathbf{0}$, limit $\Delta \mathbf{z} \rightarrow \mathbf{0}$

$$
\begin{aligned}
& -\lim _{\Delta z \rightarrow 0}\left(\frac{\left.r \rho v_{z}^{2}\right|_{z+\Delta z}-r \rho v_{z}^{2} \|_{z}}{\Delta z}\right)-\lim _{\Delta r \rightarrow 0}\left(\frac{\left.r \tau_{r z}\right|_{r+\Delta r}-\left.r \tau_{r z}\right|_{r}}{\Delta r}\right)-\lim _{\Delta z \rightarrow 0}\left(\frac{\left.r P\right|_{z+\Delta z}-\left.r P\right|_{z}}{\Delta z}\right) \\
& =0 \\
& -\frac{d\left(\rho r v_{z}^{2}\right)}{d z}-\frac{d\left(r \tau_{r z}\right)}{d r}-\frac{d(r P)}{d z}=0
\end{aligned}
$$

For incompressible fluid ($\rho=$ constant)

$-\frac{\rho d\left(r v_{z}^{2}\right)}{d z}-\frac{d\left(r \tau_{r z}\right)}{d r}-\frac{d(r P)}{d z}=0$

Since $\mathbf{V}_{\mathbf{z}} \neq \mathrm{f}(\mathrm{z}), \frac{d v_{z}}{d z}=\mathbf{0}$ and $\frac{d\left(v_{z}^{z}\right)}{d z}=0$.
$-\frac{d\left(r . \tau_{r z}\right)}{d r}-\frac{d(r . P)}{d z}=0$

Simplified equation by approximation $d P \approx \Delta P$ and $d z \approx \Delta z \approx L$ and $r \neq f$ (z):
$r \frac{d P}{d z} \approx r \frac{\Delta P}{\Delta z}=\frac{r\left(P_{L}-P_{0}\right)}{L}$

Then we obtain $1^{\text {st }}$ ODE w.r.t. $\tau_{r z}$;
$-\frac{d\left(r . \tau_{r z}\right)}{d r}-\frac{r\left(P_{L}-P_{0}\right)}{L}=0$

Apply Newton's Law: $\quad \boldsymbol{\tau}_{r z}=-\frac{\mu d v_{z}}{d r}$
$-\frac{d}{d r}\left(r \cdot\left(-\mu \frac{d v_{z}}{d r}\right)\right)-\frac{r\left(P_{L}-P_{0}\right)}{L}=0$

For isothermal system, $\mu=$ constant
$\mu \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)+\frac{r\left(P_{0}-P_{L}\right)}{L}=0$
$\frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)=-\frac{r\left(P_{0}-P_{L}\right)}{\mu L}$

Perform the equation by indefinite integration (${ }^{\text {st }}$)
$\int d\left(r \frac{d v_{z}}{d r}\right)=\int-\frac{r\left(P_{0}-P_{L}\right)}{\mu L} d r$

$$
\begin{aligned}
& r \frac{d v_{z}}{d r}=-\frac{r^{2}\left(P_{0}-P_{L}\right)}{2 \mu L}+C_{1} \\
& \frac{d v_{z}}{d r}=-\frac{r\left(P_{0}-P_{L}\right)}{2 \mu L}+\frac{C_{1}}{r}
\end{aligned}
$$

Perform the equation by indefinite integration ($2^{\text {nd }}$)

$$
\begin{aligned}
& \int d\left(v_{z}\right)=\int \frac{-r\left(P_{0}-P_{L}\right)}{2 \mu L} d r+\int \frac{C_{1}}{r} d r \\
& v_{z}=\frac{-r^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}+C_{1} \ln (r)+C_{2}
\end{aligned}
$$

Apply BC1: At $\mathrm{r}=0, \mathrm{~V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{z}, \text { max }}$ (finite)
$\left(v_{z, \text { max }}\right)=-\frac{(0)^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}+C_{1}(-\infty)+C_{2}$
(finite)

Note: The above equation is $-\infty$ by means of mathematic, but in fact the equation must be finite because Vz, \max is finite. So, we force $\mathrm{C}_{1}=0$ in order to valid the equation.

$$
v_{z}=\frac{-r^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}+C_{1} \ln (r)+C_{z}
$$

$$
\text { Finite }=\quad \text { finite } \quad+\quad \underline{0} \quad+\mathrm{C}_{2}
$$

Substitute \mathbf{C}_{1} into the equation
$v_{z}=\frac{-r^{2}\left(P_{0}-P_{\Sigma}\right)}{4 \mu L}+C_{2}$

Apply BC2: At $\mathbf{r}=\mathrm{R}, \mathrm{V}_{\mathrm{z}}=\mathbf{0}$
$0=\frac{-R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}+C_{2}$
$C_{2}=\frac{R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}$
Substitute $\mathrm{C}_{\mathbf{2}}$ into the equation
$\nu_{z}=\frac{-r^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}+\frac{R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}$
$v_{z}=\frac{\left(P_{0}-P_{L}\right)}{4 \mu L}\left(R^{2}-r^{2}\right)$

So we get $1^{\text {st }}$ solution as the velocity profile:
$v_{z}=\frac{R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}\left[1-\left(\frac{r}{R}\right)^{2}\right]$

What is expression of the maximum velocity?
Since $B C 2$ at $r=0, V z=V z, m a x$, we get,
$v_{z, \max }=\frac{R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}\left[1-\left(\frac{0}{R}\right)^{2}\right]$
$v_{z, \max }=\frac{R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}$

What is equation of volumetric flow rate (Q) ?
$\int_{0}^{Q} d Q=\int_{0}^{R}\left(v_{z} \cdot 2 \pi r \cdot d r\right)$
$Q=\int_{0}^{R} \frac{R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}\left[1-\left(\frac{r}{R}\right)^{2}\right] .2 \pi r . d r$
$Q=\left.\frac{2 \pi R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4 R^{2}}\right]\right|_{0} ^{R}$
$Q=\frac{2 \pi R^{2}\left(P_{0}-P_{L}\right)}{4 \mu L}\left[\frac{4 R^{4}-2 R^{4}}{8 R^{2}}\right]$
$Q=\frac{\pi R^{4}\left(P_{0}-P_{L}\right)}{8 \mu L} ; \quad\left(Q \propto R^{4}\right)$
"The Hagen-Porseuille equation"
Hydraulic Eng. (1839, German) Physician (1841, France)

What is mean velocity $\left(\overline{v_{z}}\right)$?
$\bar{v}_{z}=\frac{1}{2} v_{z, \max }$
$\bar{v}_{z}=\frac{R^{2}\left(P_{0}-P_{L}\right)}{8 \mu L}$

What is Force acting on surface of pipe?
$\vec{F}=\left(\left.\tau_{r z}\right|_{r=R}\right)(2 \pi R L)$
$\vec{F}=\left(-\mu .-\frac{d v_{z}}{d \gamma^{*}}\right)(2 \pi R L)$
$\vec{F}=\mu \cdot \frac{R\left(P_{0}-P_{\mathrm{L}}\right)}{2 \mu L}(2 \pi R L)$
$\vec{F}=\pi R^{2}\left(P_{0}-P_{L}\right)$

Assumptions of the Hagen-Poiseuille Equation

1. Isothermal system
2. Laminar flow
3. Incompressible fluid (v, ρ constant)
4. Newtonian fluid
5. Steady state system
6. End effects are neglected

Inverted Monometer

$$
\begin{gathered}
P_{\text {high }}=P_{1} \\
P_{\text {low }}=P_{2} \\
P_{1}=\rho_{w} g h+\rho_{w} g a+P_{x} \\
P_{2}=\rho_{\mathrm{a}} g h+\rho_{w} g a+P_{y} \\
P_{1}-P_{2}=\rho_{w} g h+\rho_{w} g a+P_{x}-\rho_{\mathrm{a}} g h-\rho_{w} g a-P_{y} \\
\text { Because } x=y, P_{x}=P_{y} \\
P_{1}-P_{2}=\left(\rho_{w}-\rho_{a}\right) g h
\end{gathered}
$$

