Example 6 Drain water from cylindrical tank

IC: At $t=0, h=H($ full tank $)$

$$
\text { At } t=t_{f}, h=0
$$

Mass balance around tank

(Rate of mass in tank) - (Rate of mass out tank) + (Rate of mass produced by reaction) $=$ (Rate of mass accumulation by time)

$$
0-\rho Q-0=\frac{d(\text { mass })}{d t}=\frac{d}{d t}\left(\rho \cdot \pi R^{2} h\right)
$$

Assume incompressible fluid, $\rho=$ constant.

$$
\begin{equation*}
Q=-\pi R^{2} \frac{d h}{d t} \tag{1}
\end{equation*}
$$

Momentum balance around shell in pipe (from example 3).
$Q=\frac{\pi R_{0}^{4}\left(P_{0}-P_{L}+\rho g L\right)}{8 \mu L}$
$Q=\frac{\pi R_{0}^{4}\left(P_{a t m}+\rho g h-P_{a t m}+\rho g L\right)}{8 \mu L}$
$Q=\frac{\pi R_{0}^{4}(\rho g(h+L))}{8 \mu L}$
Set Equation (1) = Equation (2):
$\frac{\pi R_{0}^{4}(\rho g(h+L))}{8 \mu L}=-\pi R^{2} \frac{d h}{d t}$
$-\int_{0}^{t_{f}} \frac{R_{0}^{4} \rho g d t}{8 \mu L R^{2}}=\int_{H}^{0} \frac{d h}{h+L}$
$\frac{R_{0}^{4} \rho g t_{f}}{8 \mu L R^{2}}=-\left.\ln (h+L)\right|_{H} ^{0}=-\ln (L)+\ln (H+L)$

$$
t_{f}=\left(\frac{8 \mu L R^{2}}{R_{0}^{4} \rho g}\right) \ln \left(1+\frac{H}{L}\right)
$$

Remark: Be careful! H in the problem might not be the full level tank.
Be careful! The tank might contain two immiscible fluids.

