Example 7 Drain water from spherical tank

Sphere: $V=\frac{\pi}{3} y^{2}(1.5 D-y)$
Cylinder : $V=\frac{L D^{2}}{8}(\theta-\sin (\theta)) \quad T=2 \sqrt{y(D-y)}=D \sin \left(\frac{\theta}{2}\right)$
Cone : $V=\frac{\pi h}{12}\left(D_{\text {bot }}^{2}+D_{\text {bot }} D_{\text {top }}+D_{\text {top }}^{2}\right) \quad z=\frac{1}{2 h}\left(D_{\text {top }}-D_{\text {bot }}\right)$

Given: mass of liquid inside the spherical tank at anytime " t "
$m=\pi R h^{2}\left(1-\frac{1}{3} \frac{h}{R}\right) \rho$
Mass balance around tank
(in) $-($ out $)+($ produced $)=($ accumulation $)$
$0-\rho Q+0=\frac{d(m)}{d t}$
$-\rho Q=\frac{d}{d t} \pi R h^{2}\left(1-\frac{1}{3} \frac{h}{R}\right) \rho$

Assume incompressible fluid, ρ is constant.
$-Q=\frac{d}{d t} \pi R h^{2}\left(1-\frac{1}{3} \frac{h}{R}\right)$
$-Q=\pi R \frac{d}{d t} h^{2}\left(1-\frac{1}{3} \frac{h}{R}\right)$
$-Q=\pi R \frac{d}{d t}\left(h^{2}-\frac{1}{3} \frac{h^{3}}{R}\right)$
$-Q=\pi R \frac{d}{d t}(f(h))$
By chain rule,
$\frac{d}{d t} f(h)=\frac{d f(h)}{d h} \frac{d h}{d t}$
Equation 1,

$$
\begin{aligned}
& -Q=\left(\frac{d}{d t}\left(h^{2}-\frac{1}{3} \frac{h^{3}}{R}\right) \frac{d h}{d t}\right) \pi R \\
& -Q=\left(\left(2 h-\frac{h^{2}}{R}\right) \frac{d h}{d t}\right) \pi R
\end{aligned}
$$

Momentum balance around shell in pipe (From example 3)

$$
\begin{equation*}
Q=\frac{\pi R_{0}^{4} \rho g(h+L)}{8 \mu L} \tag{2}
\end{equation*}
$$

Set Equation (2) = Equation (1) ,

$$
\begin{aligned}
& \frac{\pi R_{0}^{4} \rho g(h+L)}{8 \mu L}=\left(-\left(2 h-\frac{h^{2}}{R}\right) \frac{d h}{d t}\right) \pi R \\
& -\int_{0}^{t_{f}} \frac{R_{0}^{4} \rho g}{8 \mu L} d t=\int_{h=2 R}^{0} R \frac{\left(2 h-\frac{h^{2}}{R}\right)}{(h+L)} d h \\
& t_{f}=\frac{\int_{h=2 R}^{0} \frac{\left(2 h-\frac{h^{2}}{R}\right) d h}{(h+L)}}{-\frac{R_{0}^{4} \rho g}{8 \mu L}}
\end{aligned}
$$

(1) Graphical Method (In case that we know the value of every variables)

(2) Analytical Method: set $h+L=u, d u=d h$

$$
\begin{aligned}
& \int_{h=2 R}^{h=\alpha} \frac{R\left(2 h-\frac{h^{2}}{R}\right)}{h+L} d h=\int \frac{R h(2 R-h)}{R(h+L)} d h \\
&=\int_{u_{1}=2 R+L}^{u_{2}=L} \frac{(u-L)(2 R-u+L) d u}{(u-L+L)} \\
&=\int_{u_{1}=2 R+L}^{u_{2}=L}\left(\frac{2 R u-u^{2}+u L-2 R L+u L-L^{2}}{u}\right) d u \\
&=\int_{u_{1}}^{u_{2}}\left(2 R-u+2 L-\frac{2 R L}{u}-\frac{L^{2}}{u}\right) d u \\
&= 2 R u-\frac{u^{2}}{2}+2 L u-2 R L \ln (u)-\left.L^{2} \ln u\right|_{u_{1}} ^{u_{2}} \\
&= 2 R(h+L)-\frac{(h+L)^{2}}{2}+2 L u-2 R L \ln (u)-\left.L^{2} \ln u\right|_{h=2 R} ^{h=0} \\
&= 2 R(h+L)-\frac{(h+L)^{2}}{2}+2 L(h+L)-2 R L \ln (h+L)-\left.L^{2} \ln (h+L)\right|_{h=2 R} ^{h=0} \\
&= 2 R h-2 R L-\frac{h^{2}}{2}-\frac{2 h L}{2}-\frac{L^{2}}{2}+2 L h+2 L^{2}-2 R L \ln (h+L)-\left.L^{2} \ln (h+L)\right|_{2 R} ^{0}
\end{aligned}
$$

$$
\begin{aligned}
=[0-2 R L & \left.-0-0-\frac{L^{2}}{2}+0-2 R L \ln (L)-L^{2} \ln (L)\right] \\
& -\left[4 R^{2}-2 R L-\frac{4 R^{2}}{2}-\frac{4 R L}{2}-\frac{L^{2}}{2}+4 R L+2 L^{2}\right. \\
& \left.-2 R L \ln (2 R+L)-L^{2} \ln (2 R+L)\right]
\end{aligned}
$$

$$
=L^{2}\left[\frac{-2 R}{L}\left(1+\frac{R}{L}\right)+\left(1+\frac{2 R}{L}\right) \ln \left(1+\frac{2 R}{L}\right)\right]
$$

$$
t_{f}=\frac{L^{2}}{\rho g R^{4} /(8 \mu L)}\left[\frac{2 R}{L}\left(1+\frac{R}{L}\right)-\left(1+\frac{2 R}{L}\right) \ln \left(1+\frac{2 R}{L}\right)\right]
$$

