Energy Transport

A statement of the law of conservation of energy (for steady-state):
$\left(\begin{array}{l}\text { Rate of energy in } \\ \text { by convective } \\ \text { transport }\end{array}\right)-\left(\begin{array}{l}\text { Rate of energy out } \\ \text { by convective } \\ \text { transport }\end{array}\right)+\left(\begin{array}{l}\text { Rate of energy in } \\ \text { by molecular } \\ \text { transport }\end{array}\right)-\left(\begin{array}{l}\text { Rate of energy out } \\ \text { by molecular } \\ \text { transport }\end{array}\right)$
$\left(\begin{array}{l}\text { Rate of work } \\ \text { done on system } \\ \text { by molecular } \\ \text { transport }\end{array}\right)-\left(\begin{array}{l}\text { Rate of work } \\ \text { done on system } \\ \text { by molecular } \\ \text { transport }\end{array}\right)+\left(\begin{array}{l}\text { Rate of work } \\ \text { done on system } \\ \text { by external } \\ \text { forces }\end{array}\right)+\left(\begin{array}{l}\text { rate of energy } \\ \text { production }\end{array}\right]=0$

Example 8 Plane wall with heat source

Figure 1 Sketch illustrating one-dimensional conduction problem with heat generation

Energy balance around shell

Rate of energy in - Rate of energy out + Rate of energy production $=0$

$$
\left.A \cdot q_{x}\right|_{x}-\left.A \cdot q_{x}\right|_{x+\Delta x}+(A \Delta x) \dot{q}=0
$$

Divided through equation by $A \Delta x$ and taking limit $\Delta x \rightarrow 0$ we obtain

$$
-\lim _{\Delta x \rightarrow 0} \frac{\left.\left(q_{x}\right)\right|_{x+\Delta x}-\left.\left(q_{x}\right)\right|_{x}}{\Delta x}=-\dot{q}
$$

The expression on the left side is the first derivative of q_{x} with respect to x , so that equation becomes

$$
\frac{d}{d x}\left(q_{x}\right)=\dot{q}
$$

The equation may be integrated to give

$$
\begin{align*}
\int d\left(q_{x}\right) & =\int \dot{q} d x \\
q_{x} & =\dot{q} x+C_{1} \tag{1}
\end{align*}
$$

Apply Fourier's law: $q_{x}=-k \frac{d T}{d x}$

$$
\begin{aligned}
-k \frac{d T}{d x} & =\dot{q} x+C_{1} \\
\int d T & =\int\left(-\frac{\dot{q}}{k} x-\frac{C_{1}}{k}\right) d x
\end{aligned}
$$

The equation may be integrated to give

$$
\begin{equation*}
T=-\frac{\dot{q}}{2 k} x^{2}-\frac{C_{1}}{k} x+C_{2} \tag{2}
\end{equation*}
$$

$\mathrm{BC} 1: x=+L ; \quad T=T_{w}$
$\mathrm{BC} 2: x=-L ; \quad T=T_{w}$
BC3: $x=0 ; \quad T=T_{0}$

Apply BC 1 and BC 2 into equation (2), respectively, we get

$$
\begin{align*}
& T_{w}=-\frac{\dot{q}}{2 k} L^{2}-\frac{C_{1}}{k} L+C_{2} \tag{3}\\
& T_{w}=-\frac{\dot{q}}{2 k}(-L)^{2}-\frac{C_{1}}{k}(-L)+C_{2} \tag{4}
\end{align*}
$$

Subtract equation (4) by equation (3) we obtain

$$
\begin{equation*}
C_{1}=0 \tag{5}
\end{equation*}
$$

Substitute C_{1} into equation (3) we get

$$
\begin{equation*}
C_{2}=T_{w}+\frac{\dot{q}}{2 k} L^{2} \tag{6}
\end{equation*}
$$

Substitute C_{1} and C_{2} into the equation (2) we obtain the temperature distribution as

$$
\begin{align*}
T & =-\frac{\dot{q}}{2 k} x^{2}+T_{w}+\frac{\dot{q}}{2 k} L^{2} \tag{7}\\
T & =-\frac{\dot{q}}{2 k} x^{2}+T_{w}+\frac{\dot{q}}{2 k} L^{2} \\
T-T_{w} & =-\frac{\dot{q}}{2 k} x^{2}+\frac{\dot{q}}{2 k} L^{2}
\end{align*}
$$

The temperature distribution is therefore

$$
\begin{equation*}
T-T_{w}=\frac{\dot{q} L^{2}}{2 k}\left[1-\left(\frac{x}{L}\right)^{2}\right] \tag{8}
\end{equation*}
$$

Alternative form of temperature distribution

$\mathrm{BC} 3: x=0 ; \quad T_{0}=T_{\max }$ or $\frac{d T}{d x}=0$

Apply BC1 and then BC 3 into equation (2) we get

$$
\begin{align*}
& C_{1}=0 \tag{9}\\
& C_{2}=T_{0} \tag{10}
\end{align*}
$$

Substitute C_{1} and C_{2} into the equation (2) we obtain the temperature distribution as

$$
\begin{equation*}
T-T_{0}=-\frac{\dot{q}}{2 k} x^{2} \tag{11}
\end{equation*}
$$

Once the temperature and heat flux distributions are known, various information about the system may be obtained
(i) Maximum temperature rise (at $x=0$)

$$
\begin{equation*}
T_{\max }=T_{0} \tag{12}
\end{equation*}
$$

(ii) Average temperature rise

$$
\begin{equation*}
\bar{T}=\frac{T_{\max }}{2}=\frac{T_{0}}{2} \tag{13}
\end{equation*}
$$

(iii) Heat loss at the surface (for length L of plane)

$$
\begin{equation*}
Q_{\text {loss }}=\left.2 A q\right|_{x=L}=2 A(\dot{q} L) \tag{14}
\end{equation*}
$$

Note: we got q from equation (1) and then substitute $C_{1}=0$

