Example 9 Heat conduction with an electrical heat source

/'\/ Uniform heat

3 ———
\;\L\% production by
| A electrical
> : heating S,
qur : :qr|r+Ar
I
Il
I
T
Il
L N
Ar e

~

—_— e

Figure 2 An electrically heated wire, showing the cylindrical shell over which the energy
balance in made

BCl:at r = 0, g, 1s not infinite

BC2:atr =R, T =T,



Energy balance around shell

Rate of energy in - Rate of energy out + Rate of energy production =0
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Approximate Ar < rsor + Ar = r we get
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Divided through equation by 2rLAr and taking limit Ar = Owe obtain
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The expression on the left side is the first derivative of rq, with respect to r, so that equation
becomes
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The equation may be integrated to give
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Apply BC1: atr = 0, g, is not infinite
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The term C; must be forced to be zero in order to make the right hand side is finite we get
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Apply Fourier’s law: q, = —k%
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Assume k is constant and indefinite integrate the equation we obtain
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Substitute C, into the equation so the equation becomes
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Once the temperature and heat flux distributions are known, various information about the
system may be obtained.

(i) Maximum temperature rise (at v = ()




(ii) Average temperature rise

_ L (@@ = Toyrdr)do s,
T—T, = =
1 (fy rdr) de 8l

(iii) Heat outflow at the surface (for length L of wire)
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