
 Example 11 Heat conduction through composite walls 

 

 

 

 

 

 

 

 

 

 

Figure 3 Heat conduction through a composite wall, located between two fluid streams at 
temperatures 푇 and 푇  
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Energy balance around shell in region 01: 

Rate of energy in - Rate of energy out + Rate of energy generation = 0 

�푞 | 푊퐻 − �푞 | ∆ 푊퐻 = 0													(1) 

 

Divided through the equation by WH∆x and taking limit ∆x→0 we obtain 

− lim
∆ →

(�푞 | ∆ − �푞 | )
∆푥

= 0 

 

The expression on the left side is the first derivative of 푞  with respect to x, so that equation 
becomes 

푑푞
푑푥 = 0																																	(2) 

 

Integration of this equation gives 

푞 = 푞    (a constant)         (3) 

 

The constant of integration, 푞 , is the heat flux at the plane 푥 = 푥 . The development in eqn (1), 
(2) and (3) can be repeated for regions 12 and 23 with continuity conditions on 푞  at interfaces, 
so that the heat flux is constant and the same for all three slabs: 

 

Energy balance around regions 01, 12, 23: 

푞 = 푞 																														(4) 

 

Apply Fourier’s law for each of the three regions and get 

Region 01: 

−푘
푑푇
푑푥 = 푞 																							(5) 

Region 02: 



−푘
푑푇
푑푥 = 푞 																							(6) 

Region 03: 

−푘
푑푇
푑푥 = 푞 																							(7) 

 

We now assume that 푘 , 푘 , 푘 	are constants. Then we integrate each equation over the entire 
thickness of the relevant slab of material to get 

Region 01: 

푇 − 푇 = 푞
푥 − 푥
푘 																							(8) 

Region 12: 

푇 − 푇 = 푞
푥 − 푥
푘 																							(9) 

Region 23: 

푇 − 푇 = 푞
푥 − 푥
푘 																							(10) 

 

In addition we have the two statements regarding the heat transfer at the surfaces according to 
Newton’s law of cooling: 

At surface 0: 

푇 − 푇 =
푞
ℎ  

At surface 3: 

푇 − 푇 =
푞
ℎ  

 

  



Addition of these last five equations then gives 

푇 − 푇 = 푞
1
ℎ +

푥 − 푥
푘 +

푥 − 푥
푘 +

푥 − 푥
푘 +

1
ℎ  

or 

푞 =
푇 − 푇

+ + + +
 

 

푞 =
푇 − 푇

+ ∑
,
+

 

Sometimes this result is rewritten in a form reminiscent of Newton’s law of cooling, either in 
terms of the heat flux 푞  (J/m2.s) or the heat flow 푄 (J/s): 

푞 = 푈(푇 − 푇 ) or 푄 = 푈(푊퐻)(푇 − 푇 ) 

 

The quantity U, called that “overall heat transfer coefficient,” is given then by the following 
famous formula for the “additivity of resistances”: 

1
푈
=
1
ℎ
+

푥 − 푥
푘 ,

+
1
ℎ

 

 


