Example 12 Heat conduction through composite cylindrical walls

Figure 4 Heat conduction through a laminated tube with a fluid at temperature T_{a} inside the tube and temperature T_{b} outside

Energy balance on shell of volume $2 \pi L \Delta r$ for region 01

Energy in shell - Energy out shell + Energy generated $=0$

$$
\left.q_{r}\right|_{r} \cdot 2 \pi r L-\left.q_{r}\right|_{r+\Delta r} \cdot 2 \pi(r+\Delta r) L=0
$$

Approximate $\Delta r \ll r$ so $r+\Delta r \approx r$ we get

$$
\left.q_{r}\right|_{r} \cdot 2 \pi r L-\left.q_{r}\right|_{r+\Delta r} \cdot 2 \pi r L=0
$$

Dividing by $2 \pi L \Delta r$ and taking the limit as Δr goes to zero gives

$$
\frac{d}{d r}\left(r q_{r}\right)=0
$$

Integration of this equation gives

$$
r q_{r}=r_{0} q_{0}
$$

in which r_{0} is the inner radius of region 01 , and q_{0} is the heat flux there. In regions 12 and 23 , $r q_{r}$ is equal to the same constant. Application of Fourier's law to the three regions gives

Region 01:

$$
-k_{01} r \frac{d T}{d r}=r_{0} q_{0}
$$

Region 12:

$$
-k_{12} r \frac{d T}{d r}=r_{0} q_{0}
$$

Region 23:

$$
-k_{23} r \frac{d T}{d r}=r_{0} q_{0}
$$

If we assume that the thermal conductivities in the three annular regions are constants, then each of the above three equations can be integrated across its region to give

Region 01:

$$
T_{0}-T_{1}=r_{0} q_{0} \frac{\ln \left(\frac{r_{1}}{r_{0}}\right)}{k_{01}}
$$

Region 12:

$$
T_{1}-T_{2}=r_{0} q_{0} \frac{\ln \left(\frac{r_{2}}{r_{1}}\right)}{k_{12}}
$$

Region 23:

$$
T_{2}-T_{3}=r_{0} q_{0} \frac{\ln \left(\frac{r_{3}}{r_{2}}\right)}{k_{23}}
$$

At the two fluid-solid interfaces we can write Newton's law of cooling: surface 0 :

$$
T_{a}-T_{0}=\frac{q_{0}}{h_{0}}
$$

Surface 3:

$$
T_{3}-T_{b}=\frac{q_{3}}{h_{3}}=\frac{q_{0}}{h_{3}} \frac{r_{0}}{r_{3}}
$$

Addition of the preceding five equations gives an equation for $T_{a}-T_{b}$. Then the equation is solved for q_{0} to give

$$
Q_{0}=2 \pi L r_{0} q_{0}=\frac{2 \pi L\left(T_{a}-T_{b}\right)}{\left(\frac{1}{r_{0} h_{0}}+\frac{\ln \left(r_{1} / r_{0}\right)}{k_{01}}+\frac{\ln \left(r_{2} / r_{1}\right)}{k_{12}}+\frac{\ln \left(r_{3} / r_{2}\right)}{k_{23}}+\frac{1}{r_{3} h_{3}}\right)}
$$

We now define an "overall heat transfer coefficient based on the inner surface" U_{i} by

$$
Q_{0}=2 \pi L r_{0} q_{0}=U_{i}\left(2 \pi L r_{0}\right)\left(T_{a}-T_{0}\right)
$$

$$
\begin{gathered}
U_{i}=\frac{2 \pi L r_{0} q_{0}}{\left(2 \pi L r_{0}\right)\left(T_{a}-T_{0}\right)} \\
U_{i}=\frac{1}{\left(2 \pi L r_{0}\right)\left(T_{a}-T_{0}\right)} \frac{1}{\left(\frac{1}{r_{0} h_{0}}+\frac{\ln \left(r_{1} / r_{0}\right)}{k_{01}}+\frac{\ln \left(r_{2} / r_{1}\right)}{k_{12}}+\frac{\ln \left(r_{3} / r_{2}\right)}{k_{23}}+\frac{1}{r_{3} h_{3}}\right)} \\
U_{i}=\frac{1}{r_{0}\left(T_{a}-T_{0}\right)} \frac{1}{\left(\frac{1}{r_{0} h_{0}}+\frac{\ln \left(r_{1} / r_{0}\right)}{k_{01}}+\frac{\ln \left(r_{2} / r_{1}\right)}{k_{12}}+\frac{\ln \left(r_{3} / r_{2}\right)}{k_{23}}+\frac{1}{r_{3} h_{3}}\right)}
\end{gathered}
$$

We now define an "overall heat transfer coefficient based on the outer surface" U_{0} by

$$
\begin{gathered}
Q_{0}=2 \pi L r_{0} q_{0}=U_{0}\left(2 \pi L r_{3}\right)\left(T_{3}-T_{b}\right) \\
U_{0}=\frac{2 \pi L r_{0} q_{0}}{\left(2 \pi L r_{3}\right)\left(T_{3}-T_{b}\right)} \\
U_{0}=\frac{1}{\left(2 \pi L r_{3}\right)\left(T_{3}-T_{b}\right)} \frac{1}{\left(\frac{1}{r_{0} h_{0}}+\frac{\ln \left(r_{1} / r_{0}\right)}{k_{01}}+\frac{\ln \left(r_{2} / r_{1}\right)}{k_{12}}+\frac{\ln \left(r_{3} / r_{2}\right)}{k_{23}}+\frac{1}{r_{3} h_{3}}\right)} \\
U_{0}=\frac{\left(T_{a}-T_{b}\right)}{\left(T_{3}-T_{b}\right)\left(\frac{r_{3}}{r_{0} h_{0}}+\frac{r_{3} \ln \left(r_{1} / r_{0}\right)}{k_{01}}+\frac{r_{3} \ln \left(r_{2} / r_{1}\right)}{k_{12}}+\frac{r_{3} \ln \left(r_{3} / r_{2}\right)}{k_{23}}+\frac{1}{h_{3}}\right)}
\end{gathered}
$$

