Example 14 Heat conduction in a cooling Fin

Figure 7 A simple cooling Fin

Conduction heat balance around shell at steady state

[Rate of heat in] - [Rate of heat out $]$ - [Rate of heat loss $]=0$

$$
\left.q\right|_{z} \cdot A-\left.q\right|_{z+\Delta z} \cdot A-h\left(T-T_{\infty}\right) P \Delta z=0
$$

Division by $A \Delta z$ and taking the limit as Δz approaches zero gives

$$
\begin{gathered}
-\lim _{\Delta z \rightarrow 0}\left(\frac{\left.q\right|_{z+\Delta z}-\left.q\right|_{z}}{\Delta z}\right)=\frac{h P}{A}\left(T-T_{\infty}\right) \\
-\frac{d q}{d z}=\frac{h P}{A}\left(T-T_{\infty}\right)
\end{gathered}
$$

We now insert Fourier's law ($q_{z}=-k d T / d z$), in which k is the thermal conductivity of the metal. If we assume that k is constant, we then get

$$
\begin{align*}
& \quad-\frac{d}{d z}\left(-k \frac{d T}{d z}\right)=\frac{h P}{A}\left(T-T_{\infty}\right) \\
& \frac{d^{2} T}{d z^{2}}=\frac{h P}{k A}\left(T-T_{\infty}\right) \tag{1}
\end{align*}
$$

Set dimensionless group: $x=z / L ; \quad \theta=\frac{T-T_{\infty}}{T_{b}-T_{\infty}}$ we obtain

$$
\begin{aligned}
z & =x L ; \quad d \theta=\frac{d T}{\left(T_{b}-T_{\infty}\right)} \\
z^{2} & =(x L)^{2} \\
d z^{2} & =L^{2} d x^{2} ; d^{2} \theta=\frac{d^{2} T}{\left(T_{b}-T_{\infty}\right)}
\end{aligned}
$$

Equation (1) becomes

$$
\begin{gathered}
\frac{\left(T_{b}-T_{\infty}\right) d^{2} \theta}{L^{2} d x^{2}}=\frac{h P}{k A}\left(T-T_{\infty}\right) \\
\frac{d^{2} \theta}{d x^{2}}=\frac{h P L^{2}}{k A} \frac{\left(T-T_{\infty}\right)}{\left(T_{b}-T_{\infty}\right)} \\
\frac{d^{2} \theta}{d x^{2}}=\frac{h P L^{2}}{k A} \theta
\end{gathered}
$$

Set $\eta^{2}=\frac{L^{2} h P}{k A}$ we obtain

$$
\begin{equation*}
\frac{d^{2} \theta}{d x^{2}}-\eta^{2} \theta=0 \tag{2}
\end{equation*}
$$

Method of characteristic solution: $\theta=e^{s x}$

$$
\frac{d \theta}{d x}=s e^{s x}
$$

$$
\frac{d^{2} \theta}{d x^{2}}=\frac{d^{2} s e^{s x}}{d x^{2}}=s^{2} e^{s x}
$$

Equation (2) becomes

$$
\begin{gathered}
s^{2} e^{s x}-\eta^{2} e^{s x}=0 \\
s= \pm \eta
\end{gathered}
$$

$$
\begin{equation*}
\theta=C_{1} e^{\eta x}+C_{2} e^{-\eta x} \tag{3}
\end{equation*}
$$

The boundary conditions depend on the physical situation. Several cases may be considered:

CASE 1 The fin is very long, and the temperature at the end of the fin is essentially that of the surrounding fluid.

CASE 2 The end of the fin is insulated so that $\frac{d T}{d z}=0$ at $z=L$.

CASE 3 The fin is of finite length and loses heat by convection from its end.

Case I: The fin is very long, and the temperature at the end of the fin is essentially that of the surrounding fluid.

Assume long fin; $L \rightarrow \infty$
$\mathrm{BC} 1: z=0, \quad x=0, \quad T=T_{b}, \quad \theta=1$
$\mathrm{BC2}: z=L=\infty, x=\infty, T=T_{\infty}, \quad \theta=0$

Insert BC2 into equation (3)

$$
\begin{gathered}
0=C_{1} e^{\infty}+C_{2} e^{-\infty} \\
\text { finite }=\text { infinite }+ \text { finite }
\end{gathered}
$$

We have to force term $C_{1}=0$ in order to valid the above equation Equation (3) becomes

$$
\begin{equation*}
\theta=C_{2} e^{-\eta x} \tag{4}
\end{equation*}
$$

Use BC 1 substitute into equation (4)

$$
\begin{gathered}
1=C_{2} e^{0} \\
C_{2}=1
\end{gathered}
$$

Substitute C_{2} into equation (4) we get

$$
\begin{equation*}
\theta=e^{-\eta x} \tag{5}
\end{equation*}
$$

Substitute $\Theta=\frac{T-T_{\infty}}{T_{b}-T_{\infty}}, \eta^{2}=\frac{L^{2} h P}{k A}$ and $x=\frac{z}{L}$ to equation (5) we obtain

$$
\frac{T-T_{\infty}}{T_{b}-T_{\infty}}=e^{-L \sqrt{\frac{h P}{k A} \frac{Z}{L}}}
$$

We obtain the temperature profile as

$$
T=T_{\infty}+\left(T_{b}-T_{\infty}\right) \exp \left[-z\left(\frac{h P}{k A}\right)^{1 / 2}\right]
$$

We can determine heat loss by performing derivatives with respect to z of temperature profile

$$
\begin{gathered}
Q_{\text {loss }}=\left.A(-k) \frac{d T}{d z}\right|_{z=0} \\
\frac{d T}{d z}=\left(T_{b}-T_{\infty}\right) \exp \left[-z\left(\frac{h P}{k A}\right)^{1 / 2}\right]\left(-\left(\frac{h P}{k A}\right)^{1 / 2}\right) \\
\left.A(-k) \frac{d T}{d z}\right|_{z=0}=A(-k)\left(T_{b}-T_{\infty}\right)\left(-\sqrt{\frac{h P}{k A}}\right) \\
Q_{\text {loss }}=k A\left(T_{b}-T_{\infty}\right) \sqrt{\frac{h P}{k A}}=\left(T_{b}-T_{\infty}\right) \sqrt{h P k A} \\
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \sqrt{h P k A}
\end{gathered}
$$

We can determine fin efficiency $\left(\eta_{f}\right)$ which is defined by

$$
\eta_{f}=\frac{\text { actual rate of heat loss from the fin }}{\text { rate of heat loss from an isothermal fin at } T_{b}}
$$

$$
\begin{gathered}
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \sqrt{h P k A} \\
Q_{\text {Ideal }}=h\left(T_{b}-T_{\infty}\right) P L \\
\eta_{f}=\frac{Q_{\text {actual }}}{Q_{\text {Ideal }}}=\frac{\left(T_{b}-T_{\infty}\right) \sqrt{h P k A}}{\left(T_{b}-T_{\infty}\right) h P L} \\
\eta_{f}=\sqrt{\frac{k A}{h P L^{2}}}
\end{gathered}
$$

We can determine fin effectiveness $\left(\varepsilon_{f}\right)$

$$
\begin{gathered}
\varepsilon_{f}=\frac{\text { actual rate of heat loss from the fin }}{\text { rate of heat loss without fin }} \\
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \sqrt{h P k A} \\
Q_{\text {no fin }}=h\left(T_{b}-T_{\infty}\right) A \\
\varepsilon_{f}=\frac{Q_{\text {actual }}}{Q_{\text {no fin }}}=\frac{\left(T_{b}-T_{\infty}\right) \sqrt{h P k A}}{\left(T_{b}-T_{\infty}\right) h A} \\
\varepsilon_{f}=\sqrt{\frac{P k}{h A}}
\end{gathered}
$$

Case II: The end of fin is insulated so that $\frac{d T}{d x}=0$ at $\mathrm{x}=\mathrm{L}$ (No heat is lost from the end or from the edges.)

From equation (3);

$$
\begin{equation*}
\theta=C_{1} e^{\eta x}+C_{2} e^{-\eta x} \tag{3}
\end{equation*}
$$

From

$$
\begin{align*}
\sinh x & =\frac{e^{x}-e^{-x}}{2} \\
2 \sinh x & =e^{x}-e^{-x} \\
e^{x}=2 \sinh x & +e^{-x} \tag{6}
\end{align*}
$$

From

$$
\begin{array}{r}
\cosh x=\frac{e^{x}+e^{-x}}{2} \\
2 \cosh x=e^{x}+e^{-x} \\
e^{x}=2 \cosh x-e^{-x} \tag{7}
\end{array}
$$

Set equation (6) equal to equation (7) we obtain

$$
\begin{align*}
& 2 \sinh x+e^{-x}=2 \cosh x-e^{-x} \\
& 2 e^{-x}=2 \cosh x-2 \sinh x \\
& e^{-x}=\cosh x-\sinh x \tag{8}
\end{align*}
$$

Substitute equation (8) into (6) we obtain

$$
\begin{align*}
& e^{x}=2 \sinh x+\cosh x-\sinh x \\
& e^{x}=\sinh x+\cosh x \tag{9}
\end{align*}
$$

Substitute equation (8) and (9) into the equation (3), we get

$$
\begin{gather*}
\theta=C_{1}[\sinh \eta x+\cosh \eta x]+C_{2}[\cosh \eta x-\sinh \eta x] \\
\theta=\sinh \eta x\left[C_{1}-C_{2}\right]+\cosh \eta x\left[C_{1}+C_{2}\right] \\
\theta=A \sinh \eta x+\operatorname{B} \cosh \eta x
\end{gather*}
$$

$\mathrm{BC} 1: z=0 ; \quad x=0 ; \quad T=T_{b} ; \quad \theta=1$
$\mathrm{BC} 2: z=L ; \quad x=1 ;\left.\quad \frac{d T}{d z}\right|_{z=L}=0 ; \quad \frac{\left(T-T_{\infty}\right) d \theta}{L d x}=\frac{d \theta}{d x}=0$

Use BC 1 substitute into (10);

$$
\begin{gather*}
1=A \sinh (0)+B \cosh (0) \\
B=1 \\
\theta=A \sinh \eta x+\cosh \eta x \tag{11}\\
\frac{d \theta}{d x}=A \eta \cosh (\eta x)+\eta \sinh (\eta x) \tag{12}
\end{gather*}
$$

Use BC2 substitute into equation 12;

$$
\begin{gathered}
0=A(1) \cosh (\eta)+\sinh (\eta) \\
A=-\frac{\sinh \eta}{\cosh \eta}=-\tanh \eta
\end{gathered}
$$

Equation (12) becomes

$$
\theta=-\tanh \eta \cdot \sinh (\eta x)+\cosh (\eta x)
$$

$$
\begin{gathered}
\frac{T-T_{\infty}}{T_{b}-T_{\infty}}=-\tanh \eta \cdot \sinh (\eta x)+\cosh (\eta x) \\
T=T_{\infty}+\left(T_{b}-T_{\infty}\right)[-\tanh \eta \cdot \sinh (\eta x)+\cosh (\eta x)]
\end{gathered}
$$

Substitute $\eta=L \sqrt{\frac{h P}{k A}}$ into the equation

$$
\begin{gathered}
T=T_{\infty}+\left(T_{b}-T_{\infty}\right)\left[-\tanh \eta \cdot \sinh \left(L \sqrt{\frac{h P}{k A}} \cdot \frac{z}{L}\right)+\cosh \left(L \sqrt{\frac{h P}{k A}} \cdot \frac{z}{L}\right)\right] \\
T=T_{\infty}+\left(T_{b}-T_{\infty}\right)\left[-\tanh \eta \cdot \sinh \left(z \sqrt{\frac{h P}{k A}}\right)+\cosh \left(z \sqrt{\frac{h P}{k A}}\right)\right]
\end{gathered}
$$

We can determine heat loss by performing derivatives with respect to z of temperature profile

$$
\begin{gathered}
Q_{\text {loss }}=\left.A(-k) \frac{d T}{d z}\right|_{z=0} \\
\left.\frac{d T}{d z}\right|_{z=0}=\left(T_{b}-T_{\infty}\right)\left[-\sqrt{\frac{h P}{k A}} \cdot \tanh \eta \cdot \cosh (0)+\sqrt{\frac{h P}{k A}} \sinh (0)\right] \\
\left.\frac{d T}{d z}\right|_{z=0}=\left(T_{b}-T_{\infty}\right)\left[-\sqrt{\frac{h P}{k A}} \cdot \tanh \eta \cdot(1)+0\right] \\
Q_{\text {loss }}=\left.A \cdot(-k) \frac{d T}{d z}\right|_{z=0}=-\left(T_{b}-T_{\infty}\right) \sqrt{\frac{h P}{k A}} \cdot \tanh \eta(-k) A
\end{gathered}
$$

We can express the term $\sqrt{\frac{h P}{k A}}$ into η by multiplying $\sqrt{\frac{k A}{h P}} \cdot \sqrt{\frac{h P}{k A}}$ to above equation.

$$
\begin{gathered}
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) k A \tanh \eta \sqrt{\frac{h P}{k A}} \cdot \sqrt{\frac{k A}{h P}} \cdot \sqrt{\frac{h P}{k A}} \\
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) k A \frac{\tanh \eta}{\eta} \frac{h P}{k A} \sqrt{\frac{k A}{h P}} \cdot \frac{1}{L}
\end{gathered}
$$

(Remark: $\eta=\sqrt{\frac{k A}{h P}} \cdot \frac{1}{L}$)

$$
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \frac{h P L \tanh \eta}{\eta}
$$

We can determine fin efficiency $\left(\eta_{f}\right)$ which is defined by

$$
\begin{gathered}
\eta_{f}=\frac{Q_{\text {actual }}}{Q_{\text {Ideal }}} \\
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \frac{h P L \tanh \eta}{\eta} \\
Q_{\text {Ideal }}=\left(T_{b}-T_{\infty}\right) h P L \\
\eta_{f}=\frac{\left(T_{b}-T_{\infty}\right) h P L \tanh \eta}{\eta} \cdot \frac{1}{\left(T_{b}-T_{\infty}\right) h P L} \\
\eta_{f}=\frac{\tanh \eta}{\eta}
\end{gathered}
$$

We can determine fin effectiveness $\left(\varepsilon_{f}\right)$

$$
\begin{gathered}
\epsilon_{f}=\frac{Q_{\text {loss }}}{Q_{n o f i n}} \\
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \frac{h P L \tanh \eta}{\eta} \\
Q_{n o f i n}=\left(T_{b}-T_{\infty}\right) h A \\
\epsilon_{f}=\frac{\left(T_{b}-T_{\infty}\right) h P L \tanh \eta}{\eta} \cdot \frac{1}{\left(T_{b}-T_{\infty}\right) k A} \\
\epsilon_{f}=\frac{P L \tanh \eta}{A \eta}
\end{gathered}
$$

Case III: The fin is of finite length and loses heat by convection from its end. (Facing convection BC at the tip of fin)

From equation (10)

$$
\begin{equation*}
\theta=A \sinh \eta x+B \cosh \eta x \tag{10}
\end{equation*}
$$

$\mathrm{BC} 1: z=0 ; x=0, T=T_{b} ; \quad \theta=1$
$\mathrm{BC2}: z=L ; x=1, T=T_{L} ;-\left.k \frac{d T}{d z}\right|_{z=L}=h\left(T_{b}-T_{\infty}\right)$

Turn the BC 2 into dimensionless term

$$
\begin{gathered}
\frac{d T}{d z}=\frac{\left(T_{b}-T_{\infty}\right) d \theta}{L d x} \\
-\left.k \frac{d T}{d z}\right|_{z=L}=-\left.\frac{k\left(T_{b}-T_{\infty}\right)}{L} \frac{d \theta}{d x}\right|_{x=1}=h\left(T_{b}-T_{\infty}\right)
\end{gathered}
$$

We get

$$
\left.\frac{d \theta}{d x}\right|_{x=1}=-\left.\frac{L h}{k} \theta\right|_{x=1}
$$

Use BC 1 :

$$
\begin{array}{r}
1=A(0)+B(1) \\
B=1 \\
\theta=A \sinh \eta x+\cosh \eta x \tag{14}
\end{array}
$$

$$
\begin{gather*}
\left.\theta\right|_{x=1}=A \sinh \eta+\cosh \eta \tag{15}\\
\left.\frac{d \theta}{d x}\right|_{x=1}=A \eta \cosh \eta+\eta \sinh \eta \tag{16}
\end{gather*}
$$

From BC2: $\left.\frac{d \theta}{d x}\right|_{x=1}=\left.\frac{-L h \theta}{k}\right|_{x=1}$, substitute equation (15) and (16) into the BC2.

$$
\begin{aligned}
\left.\frac{d \theta}{d x}\right|_{x=1} & =\left.\frac{-L h \theta}{k}\right|_{x=1} \\
A \eta \cosh \eta+\eta \sinh \eta & =\frac{-L h}{k}[A \sinh \eta+\cosh \eta] \\
A\left[\eta \cosh \eta+\frac{L h}{k} \sinh \eta\right] & =\frac{-L h}{k} \cosh \eta-\eta \sinh \eta \\
A & =\frac{-\left(\eta \sinh \eta+\frac{L h}{k} \cosh \eta\right)}{\left(\eta \cosh \eta+\frac{L h}{k} \sinh (\eta)\right)} \\
\theta=\cosh \eta x & -\left[\frac{\eta \sinh \eta+\frac{L h}{k} \cosh \eta}{\eta \cosh \eta+\frac{L h}{k} \sinh \eta}\right] \sinh \eta x
\end{aligned}
$$

Temperature profile

$$
T=T_{\infty}+\left(T_{b}-T_{\infty}\right)\left[\cosh \left(z \sqrt{\frac{h P}{k A}}\right)+A^{\prime} \sinh \left(z \sqrt{\frac{h P}{k A}}\right)\right]
$$

and $\quad A^{\prime}=\frac{-\left(\eta \sinh \eta+\frac{L h}{k} \cosh \eta\right)}{\left(\eta \cosh \eta+\frac{L h}{k} \sinh (\eta)\right)}$

We can determine heat loss by performing derivatives with respect to z of temperature profile

$$
\begin{gathered}
\left.\frac{d T}{d z}\right|_{z=0}=\left(T_{b}-T_{\infty}\right)\left[\sqrt{\frac{h P}{k A}} \sinh (0)+A^{\prime} \sqrt{\frac{h P}{k A}} \cosh (0)\right] \\
\left.A \cdot(-k) \frac{d T}{d z}\right|_{z=0}=\left(T_{b}-T_{\infty}\right) \sqrt{\frac{h P}{k A}}(-k) A=Q_{\text {loss }}
\end{gathered}
$$

Substitute $A^{\prime}=\frac{-\left(\eta \sinh \eta+\frac{L h}{k} \cosh \eta\right)}{\eta \cosh \eta+\frac{L h}{k} \sinh \eta}$, we obtain

$$
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right)\left[\frac{-\left(\eta \sinh \eta+\frac{L h}{k} \cosh \eta\right)}{\eta \cosh \eta+\frac{L h}{k} \sinh \eta}\right] \sqrt{\frac{h P}{k A}}(-k) A
$$

(Remark: $\eta=L \sqrt{\frac{P h}{k A}}$)

$$
\begin{gathered}
Q_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \frac{\eta k A}{L}\left[\frac{\eta \sinh \eta+\frac{L h}{k} \cosh \eta}{\eta \cosh \eta+\frac{L h}{k} \sinh \eta}\right] \\
\underbrace{}_{\text {loss }}=\left(T_{b}-T_{\infty}\right) \eta \frac{k A}{L} M \\
Q_{\text {Ideal }}=\left(T_{b}-T_{\infty}\right) h P L
\end{gathered}
$$

We can determine fin efficiency $\left(\eta_{f}\right)$ which is defined by

$$
\eta_{f}=\frac{M}{\eta}
$$

We can determine fin effectiveness $\left(\varepsilon_{f}\right)$ which is defined by

$$
\begin{gathered}
Q_{n o \text { fin }}=\left(T_{b}-T_{\infty}\right) h A \\
\varepsilon_{f}=\frac{\eta k A M}{L} \frac{1}{h A} \\
\varepsilon_{f}=\frac{1}{h A} \sqrt{\frac{P k}{h A}} M
\end{gathered}
$$

