
Example 16 Heat conduction in a cooling Fin 

 

 

 

 

 

 

 

 

 

 

Figure 16 A simple cooling fin  
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Conduction heat balance around shell at steady state 

[Rate of heat in] – [Rate of heat out] - [Rate of heat loss] = 0 
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Substitute 퐴 = 푥 and 푃 = 푥 into the above equation 
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Divided by ∆푥 through equation and taking limit ∆푥 → 0 we get 
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From the definition of derivative equation we obtain 
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Apply Fourier’s law; 
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Set dimensionless group:휃 = ( )
( )

∶ 푑푇 = (푇 − 푇 )푑휃, equation (2) becomes: 
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From Modified Bessel: 
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Solution 

휃 = 퐴퐼 (훽푥) + 퐵퐾 (훽푥)																							(4) 

 

Case I: The fin is very long, and the temperature at the end of the fin is essentially that of 
the surrounding fluid. 

Assume long fin; 푳 → ∞  

 

BC1: 푥 = 0; � = 0:	 � = 0 

BC2: 푥 = 퐿;푇 = 푇 :	휃 = 1 
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Use BC1 to substitute into eqn (3); 

0 = 퐴퐼 (0) − 퐵퐾 (0)																						 

 

   Finite  =                0             ∞    

Because term 퐾 (0) = ∞ and the equation is finite, we have to force B = 0 to valid the equation. 
Eqn (4) becomes: 

휃 = 퐴퐼 (훽푥)																							(5) 
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Use BC2 substitute into equation (5) 
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Thus, we get the temperature profile: 
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We can determine heat loss by performing derivatives with respect to x of temperature profile 
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We can determine fin efficiency (휂 ) which is defined by 
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We can determine fin effectiveness (휀 )  
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Case II: The end of fin is insulated so that = 0 at x=L (No heat is lost from the end or 
from the edges.) 

BC1: 푥 = 푥 : � ; 	 � = 0 

BC2:	푥 = 퐿: 푇 = 푇 ; 	휃 = 1 

 

 

Case III: The fin is of finite length and loses heat by convection from its end. (Facing 
convection BC at the tip of fin) 
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