ชื่อปริญญานิพนธ์ "การศึกษาและออกแบบกังหันลมสูบน้ำแบบซาโวเนียส" โดย นายจิรวุฒิ สุทธิคำภา รหัสนักศึกษา 5113440363 น.ส.มณี เสียงดี รหัสนักศึกษา 5113400756 ## าเทคัดย่อ โครงงานนี้เป็นการศึกษาเกี่ยวกับการออกแบบและการทำงานของกังหันลมชนิดแกนตั้ง แบบซาโวเนียส ออกแบบให้ใช้กังหันลมเพื่อให้กำลังแก่เครื่องสูบน้ำชนิดสูบชัก ใช้สังกะสีเป็นวัสคุ ในการสร้างใบกังหัน ขนาดเส้นผ่าศูนย์กลางใบกังหัน 1.6 เมตร สูง 0.8 เมตร ขนาดเส้นผ่าศูนย์กลาง เพลา 1 นิ้ว ติดตั้งและทดสอบประสิทธิภาพบนโต๊ะทดลอง จากผลการทดสอบกังหันลมสูบน้ำตัวต้นแบบ พบว่า กังหันลมเริ่มทำงานที่ความเร็วลม 2.90 เมตรต่อวินาที และการทดสอบที่ระดับความสูงต่างๆของระยะคูคยกของเครื่องสูบ พบว่า เมื่อผลต่างของระดับน้ำกับเครื่องสูบน้ำ (ΔH) เท่ากับ 7 เมตร อัตราการไหล (Q) จะลดลงเท่ากับ 0 ลูกบาศก์เมตรต่อวินาที การติดตั้งกังหันลมสูบน้ำ ควรพิจารณาค่าผลต่างระดับน้ำกับเครื่องสูบน้ำ (ΔH) ให้เหมาะสม และคำนึงถึงความต่อเนื่องของความเร็วลมในแต่ละช่วงเวลา จึงจะทำให้ได้ ปริบาณน้ำที่เหมาะสมแก่การใช้งาน Project Title "A study and Design of Savonius wind turbine for water pump" By Mr. Jirawut Suttikumpa ID No. 5113440363 Mrs. Manee Siangdee ID No. 5113400756 ## **Abstract** A study and design savonius vertical axis water pump for wind turbine is designed to specific about using wind turbine for encouraging the reciprocating pump with galvanized plated that was a material of turbine frame. The turbine has a diameter 1.6 m high 0.8 m, shaft diameter, 1 inch, which is installed on a tested table. The result of studying and designing savonius wind turbine for water pump met the efficient criterion that wind turbine is working with the wind speed average at 2.9 m/s or more. In addition, the various heights testing were found that static suction head (Δ H) has 7 meters and the discharging (Q) has decreased 0 m³/s. Installing savonius wind turbine for water pump should be considerate about static suction head (Δ H) and wind speed in continuity. So, the savonius wind turbine for water pump can encourage the optimum level of the water pump.