บทคัดย่อ

ชื่อเรื่อง	: การปรับปรุงสภาวะการเดินระบบบำบัดน้ำเสียที่ใช้ถังสัมผัสไร้อากาศแบบ ไหลขึ้นร่วมกับแอคติเวเตดสลัดจ์แบบเอโอ (Anoxic /Oxic) ของโรงงานผลิต	
	ปลาทูน่ากระป๋อง	
โดย	: นางสาวกิตติวรรณ	นิธิพานิช
	นายศักดา	วงลาศรี
ชื่อปริญญา	: วิศวกรรมศาสตร์บัณฑิต	
สาขาวิชา	: วิศวกรรมสิ่งแวดล้อม	
ประธานกรรมห	การที่ปรึกษา : ผศ.ดร. วิ	วิภาดา สนองราษฎร์

การศึกษาวิจัยนี้มีวัตถุประสงค์หลัก เพื่อแก้ปัญหาตะกอนไม่จมตัวและการเกิดตะกอนลอยใน บ่อตกตะกอน โดยศึกษาสภาวะการเดินระบบบัดน้ำเสียในชุดทดลอง ที่จำลองเป็นระบบ Sequencing Batch Reactor (SBR) และนำสภาวะที่ได้จากชุดทดลองไปปรับการเดินระบบบำบัดน้ำ เสีย โดยสภาวะการเดินระบบที่ทำการศึกษามีดังนี้ 1) อัตราส่วนน้ำเสียจากถัง UAC และจากบ่อ EQ ที่ 60:40, 70:30, 75:25, 80:20, และ 85:15 โดยกำหนดค่า F/M ratio = 0.25 d⁻¹ ในรูปของ TCOD 2) ความเข้มข้นของสารเคมีที่ช่วยในการตกตะกอนโดยใช้เฟอร์ริกคลอไรด์ (FeCl₃) 0.46 เปอร์เซ็นต์ ในปริมาณ 10, 20, 30, 40 และ 50 มิลลิลิตรต่อลิตร 3) ปริมาณของโซเดียมไฮดรอกไซด์ (NaOH) 5 เปอร์เซ็นต์ ที่ความเข้มข้น 0.5, 1.0, 1.5, และ 2.0 มิลลิลิตรต่อลิตร และ 4) ความเข้มข้น ของสารเคมีที่ใช้ในการฆ่าเชื้อจุลินทรีย์ที่ไม่พึงประสงค์ โดยใช้ โซเดียมไฮโปคลอไรท์ (NaOCl) ความ เข้มข้น 10 เปอร์เซ็นต์ ในปริมาณ 0.1, 0.3, 0.5, 0.7 และ 1 มิลลิลิตรต่อลิตร จากการศึกษาพบว่า อัตราส่วนน้ำเสียจากถัง UAC และจากบ่อ EQ ที่ 75:25 ให้ประสิทธิภาพการกำจัดซีโอดีดีที่สุด (98.3 ± 0.3%) สำหรับชุดทุดลอง และเมื่อนำไปปรับใช้กับระบบบำบัดน้ำเสียของโรงงาน ได้ประสิทธิภาพ การกำจัดซีโอดี 87.8 ± 5.10% เฟอร์ริกคลอไรด์ (0.46 เปอร์เซ็นต์) ที่ความเข้มข้น 30 มิลลิลิตรต่อ ลิตร ให้ค่า SV30 ดีที่สุดสำหรับชุดทดลอง และเมื่อนำไปปรับใช้กับระบบบำบัดน้ำเสียของโรงงาน ได้ ประสิทธิภาพการกำจัดซีโอดี 95.2 ± 1.2% โซเดียมไฮดรอกไซด์ (5 เปอร์เซ็นต์) ที่ความเข้มข้น 0.5 มิลลิลิตรต่อลิตร ให้ค่า SV30 ดีที่สุดสำหรับชุดทดลอง และเมื่อนำไปปรับใช้กับระบบบำบัดน้ำเสียของ โรงงาน ได้ประสิทธิภาพการกำจัดซีโอดี 95.7 ± 1.6% และโซเดียมไฮโปคลอไรท์ (10 เปอร์เซ็นต์) ที่ ความเข้มข้น 0.3 มิลลิลิตรต่อลิตร ให้ค่า SV₃₀ ดีที่สุดสำหรับชุดทดลอง และเมื่อนำไปปรับใช้กับระบบ บัดน้ำเสียโรงงานได้ประสิทธิภาพการกำจัดซีโอดีเท่ากับ 96.9 + 0.6%

ABSTRACT

TITLE	: IMPROVEMENT OPERATING CONDITION FOR COMBINED UPFLOW
	ANAEROBIC CONTACT (UAC) AND A/O ACTIVATED SLUDGE PROCESS
	(ANOXIC/OXIC) FROM TUNA WASTEWATER TREATMENT PLANT
BY	: MISS. KITTIWAN NITIPANICH
	MR. SAKDA WONGLASRI
DEGREE	: BACHELOR OF ENGINEERING
MAJOR	: ENVIRONMENTAL ENGINEERING
CHAIR	: ASSISTANT PROF. DR. WIPADA SANONGRAJ

The main objective of this research was to solve the problem, bulking sludge and rising sludge in the sedimentation tank. The study investigated the operating conditions of lab-scale Sequencing Batch Reactor (SBR). The optimal operating conditions obtained from lab-scale were then tested in wastewater treatment plant. The studied operating conditions include 1) the ratio of wastewater from UAC to EQ tank as follows 60: 40, 70:30, 75: 25, 80: 20 and 85: 15, F/M ratio was maintained at 0.25 d⁻¹ in the form of TCOD, 2) the dosage of coagulant using 0.46% ferric chloride (FeCl₃) at concentrations of 10, 20, 30, 40 and 50 ml/L, 3) the amount of 5% NaOH at concentrations of 0.5, 1.0, 1.5 and 2.0 ml/L, and 4) the amount of disinfectant using 10% NaOCl at concentrations of 0.1, 0.3, 0.5, 0.7, and 1 ml/l. The study found that the ratio of wastewater from UAC to EQ at 75: 25 yielded the highest COD removal efficiency (98.3 ± 0.3%) for the lab-scale. This ratio was then tested with the wastewater treatment plant, the COD removal efficiency received was 87.8 \pm 5.1%. Ferric chloride (0.46%) at the concentration of 30 mU/L yielded the best SV_{30} for the lab-scale. This amount was then tested with the wastewater treatment plant, the COD removal efficiency obtained was 95.2 \pm 1.2%. Sodium hydroxide (5%) at the concentration of 0.5 ml/L yielded the best SV_{30} for the lab-scale. This concentration was then tested with the wastewater treatment plant, the COD removal efficiency received was 95.7 \pm 1.6%. Sodium hypochlorite (10%) at the concentration of 0.3 ml/L yielded the best SV_{30} for the lab-scale. This concentration was then tested with the wastewater treatment plant, the COD removal efficiency received was 96.9 \pm 0.6%.