การศึกษาการถ่ายเทความร้อนด้วยการพาแบบบังคับในวัสดุพรุนชนิดเส้นใย

โดย นายกันตพิชญ์ เข็มทอง นายธนาฤทธิ์ พินิจนอก นายสมบูรณ์ สายสะอาด

บทคัดย่อ

โครงงานนี้มีจุดมุ่งหมายเพื่อศึกษาทดลองการถ่ายเทความร้อนด้วยการพาแบบบังคับในวัสดุ พรุนแบบเส้นใย ซึ่งเกิดจากการพาความร้อนแบบบังคับทิศทางการไหลให้ไหลตามแนวรัศมี ที่อัตรา การไหล 5 - 15 LPM โดยใช้วัสดุพรุนชนิดเส้นใยซ้อนทับกัน วัสดุพรุนแบบเส้นใยทำจากสแตนเลส AISI 304 ความหนา 1 เชนติเมตร มีเส้นผ่านศูนย์กลาง 5.5 เซนติเมตร และมีค่า PPI 14, 16, 18 ซึ่งมีค่าความพรุน 0.789, 0.77, 0.721 ตามลำดับ การทดลองนี้ใช้อีตเตอร์ที่อุณหภูมิที่แตกต่างกัน 5 ระดับเป็น 60, 70, 80, 90 และ 100 ℃ ตามลำดับ และใช้ไนโตรเจนในการพาความร้อน โดย ปรับอัตราการไหล 3 ระดับ คือ 5, 10 และ 15 LPM ตามลำดับ และเก็บข้อมูลตามอุณหภูมิ (Tw) ที่ตำแหน่งต่างๆ จำนวน 4 จุดบนหน้าแปลน

จากการศึกษาทดลอง พบว่าอัตราการไหลของของไหลที่สูงจะทำให้ค่าเรย์โนลด์นัมเบอร์ (Re) สูงขึ้นตาม และที่ค่าความพรุน(ϕ) สูง เป็นผลทำให้ ค่านัสเซลส์นัมเบอร์ ($Nu_{_n}$) สูงขึ้นตาม สามารถนำเสนอความสัมพันธ์เชิงเส้นตรงระหว่าง ค่าเรย์โนลด์นัมเบอร์ (Re) กับค่านัสเซลส์นัมเบอร์ ($Nu_{_n}$) จึงสรุปได้ว่าการทดลองนี้วัสดุพรุนชนิดเส้นใย Mesh 14 ความพรุน(ϕ) 0.789 และที่อัตรา การไหล 15 LPM มีการการถ่ายเทความร้อนด้วยการพาแบบบังคับดีที่สุด มีคุณสมบัติเหมาะกับการ เป็นฮีตชิงค์มากที่สุด The study of heat transfer by forced convection open cellular fiber porous material

By Mr.Kantapit Khemthong Mr.Tanarit Pinijnok Mr.Somboon Saisaard

Abstract

This research experimental aimed to studies of the radial-flow forcedconvection heat transfer in a fiber porous material at the flow rate 5 – 15 LPM. In the experiments, fiber overlays porous material made by Stainless AISI 304 The thickness 1 centimeter with diameter 5.5 centimeter were adopted. The PPI values are 14, 16, 18 which the porosity 0.789, 0.77, 0.721 respectively. This experiment a heater for temperature control with different fives level are 60, 70, 80, 90 and 100 °C respectively. Heat transfer by gas nitrogen, the flow rate is 3 levels are 5, 10 and 15 LPM respectively and record the temperature 4 position in flange.

From the experiment found the high flow rate of the fluid makes the Reynolds Number (Re) higher and the high porosity, making the Nusselt Number (Nu_m) higher, can be present linearity correlation between Reynolds Number (Re) with Nusselt Number (Nu_m). In concluded that this experiment, the fiber porous material mesh 14 at 0.789 of porosity at the flow rate is 15 LPM can be forced-convection heat transfer are the best and qualified as a heat sink as possible.

จ