ผลของระยะเวลาเคลือบน้ำยาบุ่มต่อกำลังรับแรงอัดของคอนกรีต

โดย นายอรรถพล ซองทุมมินทร์ นายม่านฟ้า สามารถ

บทคัดย่อ

ปริญญานิพนธ์นี้มีวัตถุประสงค์เพื่อทดสอบกำลังรับแรงอัดของคอนกรีตในสภาพการบ่ม ที่แตกต่างกัน เนื่องจากในการก่อสร้างอาคารคอนกรีตเสริมเหล็ก การพัฒนากำลังของคอนกรีต ให้ได้ตามที่ออกแบบไว้เป็นสิ่งที่สำคัญ จึงจำเป็นต้องมีการบ่มคอนกรีต น้ำเป็นองค์ประกอบที่สำคัญ ที่สุดสำหรับปฏิกิริยาไฮเดรชั่น ซึ่งเกิดขึ้นในระยะบ่มคอนกรีต จะทำให้คอนกรีตพัฒนากำลังได้ ตามที่ออกแบบ คณะผู้จัดทำจึงได้ออกแบบการทดสอบกำลังรับแรงอัดของคอนกรีตในสภาพการบ่ม ที่แตกต่างกันโดยแบ่งเป็น 4 แบบคือ รูปแบบ A บ่มในอากาศ รูปแบบ B บ่มด้วยการแช่น้ำ (control series) รูปแบบ C บ่มด้วยการห่อพลาสติก รูปแบบ D บ่มด้วยการเคลือบด้วยน้ำยาบ่มทันที ที่ถอดแบบ โดยรูปแบบ C และรูปแบบ D จะถอดแบบที่เวลา 6 ชั่วโมง 12 ชั่วโมง และ 24 ชั่วโมง ซึ่ง ในการทดลอง ใช้คอนกรีตผสมเสร็จของ CPAC โดยมี Mixed Design สำหรับกำลังรับแรงอัด ของตัวอย่างรูปลูกบาศก์ 240 กิโลกรัมต่อตารางเซนติเมตร ที่อายุ 28 วัน ผลการทดลองเมื่อเทียบ กับตัวอย่างชุดควบคุม Series B (บ่มโดยวิธีแช่น้ำ) แล้ว ตัวอย่าง Series A (บ่มในอากาศ) ให้กำลัง รับแรงอัดที่ 28 วัน ต่ำสุดประมาณ ร้อยละ 64 ของ Series B ในขณะที่ Series C และ D ให้ผลกำลัง และ ร้อยละ 84 ตามลำดับ ซึ่งเป็นไปตามสมมติฐาน รับแรงอัดที่ 28 วัน เป็น ร้อยละ 85 การใช้น้ำยาบุ่มคอนกรีต และพลาสติกห่อหุ้มทำให้ลดการสูญเสียน้ำในก้อนตัวอย่างทำให้มีน้ำ ในมวลคอนกรีตทำปฏิกิริยาไฮเดรชั่นได้นานกว่าการปล่อยให้ระเหยไปแบบการบ่มในอากาศ เป็นผลให้ Series C และ Series D มีกำลังรับแรงอัด สูงกว่า Series A

The Effect of Curing Methods on Compressive

Strength of Concrete

By Mr.Attapol Songtummin

Mr.Marnfar Samart

ABSTRACT

The purpose of this research is to study the compressive strength of concrete with different curing methods. Series A is air dry curing. The control series , series B , is curing by submerging under water. Series C and series D are curing by plastic wrapping and coating by curing agent consecutively. The results show that series A as the expectation, yields the lowest compressive strength (at 28 days) 64 % of control series. Series C and series D show the comparable results approximately 85 %, 84 %, of control series in the orders. The results agree well with the assumption and prove that moisture retention process in concrete mass effects the compressive strength of concrete.