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Abstract

Nanofiltration performance and capacity {i.e. rejection aod flux deciine) of zinc solutico were investigated
using a dead-end test cell at room temperature. An aromatic polyamide NF-90 membrane was chosen to determine the
impacts of solution chemistry on nanofiltration fouling of zinc solution. The experimental resuits revealed that
solution flux decline was dependent on ionic strength, solution pH, and zinc solutions. Solution flux conducted with
different zinc solutions (i.e. ZnSO, and Zn(NO,), decreased with solution pH. At high pH, flux solutions exhibited
greater flux decline than those having low solution pH, while zinc rejection presented higher rejection. Increased ionic
strength had a greater increase in flux decline, while zinc ion rejection decreased with decreasing solution pH and
increasing jonic strength. Such resuits were related to low solution pH, it suggested an increased fixed charge of
proton (H"), decrcasing electrical double layer thickness within membrane, thus allowing incrcasedwzinc concentration
passing through the membrane surface. In addition, flux solution and rejection decreased further in higher ionic

strength, which reduced negatively charged membrane, and thus decreased rejections,

Keywords : Flux decline; fouling; nanofiltration; rejection; zinc
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Introduction

Membrane technologies have been widely used
in the field of water treatment duc to stringent water
quality regulations [1]. They are efficient technologies
to remove fced source water in terms of natural organic
rastter (NOM) [1-5), inorganic scalants [6-8], salt
solution [9-11] and heavy metals [12-16]. Nanofiltration
(NF). one of membrane technologies, is a relatively new
membrane process, which is considered to be
intermediate between ultrafiltration (UF) and reverse
osmosis (RO) in terms of operating conditions. NF
membrane processes operatc at pressures betwecn 50
and 150 psi much lower than RO {200 to 1000 psi), but
higher than UF (10 to 70 psi). At the present time, NF is
increasingly applied in the field of water treatment. For
example, ground waters contain high colar due to
dissolved organic matter (DOM), partially decomposed
from plant materials, high hardness from the
composition of calcium (Ca™") and magnesium (Mgp),

and high iron (Fe') and manganese (Mn"")

\LALLE msanave ang; aisgawi; w1 lullamsdu; p1side, Haned

concentration. NF can provide high water quality and
large amount of water production in the short period of
operation. This can give water quality within drinking
water standards. However, membrane fouling caused by
organic and inorganic substances can be a major factor
for limitirg more widespread use of membrane
technologies, reducing long-term filtration, and
increasing costs for membrane operation through higher
labor, cleaning and replacement.

Inorganic fouling (i.e. negative and positive ions)
can be a significant factor that enhances permeate flux
decline during filtration. This may causc an increased
conceniration polarization that exceeds solubility limit,
resulting precipitation (i.e. Ca™, Mg", CO,’, SO} and
PO:'). This has been recently investigated by
Jarusutthirak et al. [8]. Molinari et al. [13] investigated
the interactions between membranes (RO and NF) and
inorganic pollutants (i.e. SiO,, NO,, Mn" and humic
acid). They showed that membrane fouling was caused
by the interactions betwecn the membranes and other

ions. Other factors, which can cause membrane fouling
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are sclution pH, ionic strength, concentration, solution
composition, and operating conditions.

Zinc and its alloys are inorganic substance which
mostly used in mechanical engineering and building. It
is estimated that 10 million tons of zinc was used in the
year 2001. However, industrialization and urbanization
are often accompanied hy large pollution emissions.
Zinc creates serious problems for drinking watess.
Against this increascd pollution, very strict standards
were imposed for heavy metal content water because of
their high toxicity. Drinking water standards of zinc is
about 5 mg/L [17].

Fouling on membrane surface by nanofiltration

may influence by operating condition such as solutien

pH and ionic strength. Hence, the objective of this study
was 1o investigate the effects of solution chemistry
during nanofiltration of zinc solution. The effects of
solution chemistry (i.e. solution pH and jonic strength)
were determined on nanofiltration fouling. The
discussion of this study was adapted to improve

membrane filtration for long-term operation.

Materials and Methods

Nanofiltration memhrane characteristics

An aromatic polyamide thin-film composite NI-
90 membrane, produced by Dow-FilmTec, was chosen
to determine the effect of solution chemistry on
nanofiltration  performance.  According  to  the

manufacturer, the maximum operating pressure is 600

. psi {or 4,137.6 kPa), maximum feed flow rate is L6 gpm

(3.6 m/hr), maximum operating temperaturc 113°F
{45°C) and the operating pH is ranged from 1 to 12.
Frce chlorine tolerance is lcss than 0.1 ppm. In
operation, membrane flat sheets were stored in 1%

sodium meta-bisulfite (Na,S,0.) and kept i rcfrigerator

at 4 °C to prevent microhial activity. The water flux
characteristic was determined for 30-min eperation with
D] water for membrane compaction. The membrane
permeability was determined as a slope between cleaned

water flux and operating pressures.

Analytical method

Zinc concentration was measured by using
atomic absorption (AA) spectrometry (AAnalyst 200
Vession 2, Perkin Elmer Corp.). Measurements of
solution pH, conductivity and temperature were made
using pH meter (Inolab pH level 1 Wissenschaftlich-
Technische Woerkstatten (WTW) Gmbh & Co
(Weilheim, Germany)) and conductivity meter (Inolab
cond level 2 Wissenschaftlich-Technische Werkstatten
(WTW) Gmbhh & Co. (Weilheim,Germany)),
respectively. lonic strength of samples were calculated
using @ correlation hetween conductivity and ionic

strength of NaCl standards, I.SA[M]=0.52CIZI,2.

Flux decline experiments

The experiments were carried out with threc
liters of solution containing zinc solution (ZnSQO, and
Zn(NOJ)z) in fixed concentration of 0.31 mM (about 20
mg/L), while varying solution pH from 4 to & and ionic
strengths  (0.01, 0.05 M as NaCl). Flux decline
experiments were tested by using an 400 ml dead-end
membrane filtration apparatus (Amicon 8400, USA)
with magnetic stirrer (LABINCO, LD-12) and the
magnetic spin bar fitted into the cell provided the
agitation. The velocity speed was about 300 rpm.
A membrane sheet can be fitted to the cell. The
membrane active area is 41.38 em’. The operating
pressure was employed via high-pressure regulator of
nitrogen cylinder. The pcrmeate volume was determined

during filtration by using the electrical balances (Mettler
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Toledo Monobloc PB-3002-8, USA). After filtration
was lerminated, two steps of cleaning, e
hycirodynamic cleaning followed by chemical cleaning,
were performed. For hydredynamic cleaning, the
membrane sheet was cleaned with DI water, then
followed with chemical cleaning, acidic solution (using
citric acid) with pH of 4 for 30-mun each. After each
cleaning, water fluxes at different operaling pressures

were measured to determine water flux recovery.

Analysis of Results

The parameters taken into account were:

- The volumetric flux J, (Lfmth or LMH ) was
determined by measuring the volume of permeate
collected in a given time interval divided with

membrane area by the relation:
J. = L (AP-0Azn) = g
v p( n) = A )

Where L, is the membranc permeability; APis the
transmembrane pressure; ¢F is the osmotic reflection
coefficient; TU is the osmotic pressare; Q and A represent

fiow rate of permeate and the membrane area, respectively.

- The observed rejection was calculated by the

following relation:

C
%R = (l——i}xl(}O 2)
C
Where CP and C, are the solution concentrations in the

permeate and in the initial feed solution, respectively.
Results and Discussion

Water flux characteristics

Before the experimenis, the mcmbrane
permeability was measured after membrane compaction
by the effects of pressure on water flux or permeate flux
produced from deionized water (DI water). As s.hown in
fig. 1, the effects of pressure at 0, 10, 20, 30, 40 and 50
psi on permeate flux increased lincarly with increasing
operating pressure with high correlation of ¢.9986. The
slope represents the membrane permeability (LP) about
04925 LMHpsi. Tbe membrane permeability
measured was considered as reference to evaluate
cleaning procedure, concentration polarization and

fouling.

30
25 1

20 -

Flux {LMH)

0 20

40 60
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Fig. | Effect of pressure on cleaned water flux
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After filtration experiments, the membrane
sheets were cleaned with DI water and followed with
citric acid in order to investigate water flux recovery.
As shown in Fig. 2, the cleaned water flux after system
cleaning of ZnSO, and Zn(NO,), at pH 6 had similar
flux as water flux after membrane compaction, where
hydrodynamic cleaning showed lower flux. However,
flux observed after hyvdrodynamic cleaning was not
significantly low when compared with cleaned flux after
membrane compaction. This suggested that inorganic

zinc cowld not significantly affect membrane fouling

7 —
.. 201 < Membrane compaction
§ " " Afier hydrodynamic: cieaning
= & After chamical cleaning
»*
3 15 1
=
£
S
s 104
H
€
«
2
Y s

¢ T T -

0 10 20 30 40 50

Qperating pressure (psi}

(a)

during fiftration experiments. Increased flux caused by
chemical cleaning was possibly due to protons from
acid which dissotved efficiently inorganic zinc from the
membrane surface. A common trend of increase in flux
was found for the membrane sheets when cleaned by
deionized water and chemical agent. The comparisons
of cleaned water fluxes were simularly found with
different zinc solutions. This indicated that wmc zinc
{ZnSO, and Zn(NO,),) showed less non-rccoverable
fouling after system cleaning, indicating high water flux

recovery.

30

@ Membrane compaclion
O Afer niydrodynamic cleaning
& Afler chemical claaning

25

10 4

Cieaned water flux (LMH)
>
1

0 10 20 36 40 50

Operating pressure {psi)

)

Fig. 2 Cleaned water flux after system cleaning at pH 6 («) ZnSG, and (b) In({NG,),

Effects of solution pH on flux

The effects of the solution pH on flux decline of
ZnS0, and Zo(NO,), were carried out at pH 4,5,6,7 and
8 with keeping constant ionic strength 0.01 M as NaCi
at 60-psi operating pressure. Zinc concentration was
about 0.31 mM. Fig. 3 showed relative flux with
function of operating period. 1t can be seen that the rate
and extent of flux decline increased with increasing
solution pH for both solutions of ZnSO, and Zn(NO,),.
At the higher pH, flux solutions of Zn(NO,), (J /T =
0.78 at pIl 8) showed higher flux decline than those of
low solution pH (J /1 = 0.9} at pH 4). At low pH, it

suggested an increased fixed charge of H+, decreasing
electrical double layer thickness within membrane or
both, thus decreased the concentration at the membrane
surface. At high pH, the membrane surface and pores
become both more negatively charged due to the
presence of anion (inorganic). As a result, the pore size
of the membrane is reduced because of the repulsion
between neighbor negatively charged groups and adopts
an extended conformation {18, 19]. In addition, the
osmotic pressure near the membrane surface increase at
high due to the high salt rejections, which decreased the

driving pressure. Together, these mechanisms lead to a
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Fig. 3 Effect of solution pH on flux ; (a) ZeSO, and (b) Zn{NO,},

decrease in permeate flux and an increase in sall
rejection with pH. From the figure, it was found that
solutions having Zn(NO,), showed greater flux decline
that those having ZnSO,, possibly due (0 higher salt
rejections for Zn{NOQ,), solution, thus increased osmotic

pressure at the membrane surface.

Effects of ionic strength on flux

Fig. 4 presents the effect of ionic strength on flux
that was carried out at pH 6 with different ionic strengths of
0.01 snd 0.05 M as NaCl. The solution pH of 6 was
selected due to avoid zinc precipitation at high pH and high

1.2
1¢
JBS Boooe ° N R
oca oo ° <
x 0.8 1 o o a
= o a
Z os]
o«
K
0.4 1 <001 M NaCi
00.05 M NaCi
0.2 4
[ T 4
9 50 100 150 200 250

Operating lima (min)

(a)

hydrogen ion conceritration at low pH, which could affect
membrane performance. It was observed that the extent
and rate of solution flux decline increased with increasing
jonic strength. This was possibly due to increased reduced
electrostatic repulsion at the membrane surface, thus
suggesting high flux decline. Previous study indicated that
increases in ion corcentration could reduce the
permeability of charged membranes [20-22}, thus reduced
permeate flux. The results showed similar trend for both
ZnS0, and Zn(NO,), solution with increasing sodium salt

at the membrane surface.
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Fig. 4 Effect of ionic strength on flux; (a) ZnS0O, and (h) Zn(NO,),
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Effects of solution pH on rejection

The effect of the solution pH on rejection of ZnSG,
and Zn{NO,), was carried out with different solunon pH
from 4, 5, 6, 7 and 8. lonic strength of 0.01 M NaCl, 60-psi
operating pressure and solution concentration of ¢.31 mM
were maintained constant during filtration. The obtained
results were presented in Fig. 5. Zinc ion rejection was
found to be decreased with decreasing solution pH level. At
higher solution pH, membrane surface take maore negative
charges, thus attracting greater zinc ion, Consequently,
solution pH of 6-8 for ZnSO, had greater ion rejection,
about 97-98%, while low solution pH exhibited lower
rejection about 85-86%. For Zn(NO,}, solution, the ion
rejection percentages were approximately 96-99%. At low
pﬁ, the zﬁi;::hign"rejection of ZnS0, solution showed lower
than that of Zn(NO,), solutinn, possibly due to H'_ ion
reducing negative charge at the membrane, causing larger
membrane pores. This allowed negatively charged anion
jon passing through the membrane, thus increasing zinc ion
concentration in the permeate in order to maintain
clectroncutrality condittor. This resuit showed higher zinc
ion concentration for ZnSO, solution than that for

Zn(NO,), solution, thus lowering zinc 10n rejection.

e L L I
5 4
5 901
©
L3
] ©
n.: g5 ¥ *° Q ° L] o o o °
E
80 epH4 oOpHS 2pHBE
xpH7 ~xpHd
75 v -
4] 50 100 150 200 250

Operallng tima {min)

(a)

% Rejaction

Effect of ionic strength on zinc ion rejection
The effect of salt solution on zinc ion rejection

was carried out with ionic strengths of 0.01 and 0.05 M

" as NaCl as shown in Fig. 6. Solution pH of 6 for ZnSQO,

and Zn(NO,), solution was kept constant during
filtration. It was {ound that the trend of iomc strength at
0.05 M indicated lower zinc ion rejection than those of
0.01 M. Increased salt concentration can provide
positively charged Na' at the membrane surface,
thus decreased elecirostatic charge repulsion.  The
phenomena can enhance a reduction in double layer
thickness on the merabrane surfacc, thus affecting a
reduction in membrane permeability. This can allow
zinc ion passage (hrough the membrane surface,
.suggcsting a decrease in ion rejection. The zinc ion
rejection for ZnSO, solution showed higher than that of
Zn(NO,), solution was possibly caused by higher charge
repulsion of negatively charged SO:’, when compared
with negatively charged NO,, thus increased zinc
concentration for ZnSO, solution in order to satisfy an
electroneutrality condition, an equivalent number of
zinc jon retained on the membrane surface, thus

resulting high zinc rejection.
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Fig. 5 Effect of solution pH on zinc ion rejection; (2) ZnSO, and (b) Zn(NO,),
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Nanofiltration performance of lead solutions: effects
of solution pH and ionic strength
Wwuthikorn Saikaew, Supatpong Mattaraj and Ratana liraratananon

ABSTRACT

Nanofiitration performance (i.e. rejection and fiux decline) of lead solutions was investigated
using a dead-end test cell at room temperature. An aromatic polyamide NF-$0 membrane was
chosen to determine the impacts of solution chemistry. The experimental resuits revealed that
solution flux deciine was dependent on solution pH, ionic strength, and type of lead solutions.
solution flux conducted with different types of iead solutions (.e. PBCH, and Pb(NQ3).) decreased
with increased solution pH. Solutions having high pH exhibited greater flux decline than those
having low solution pH, while lead ion rejections were reiatively high. Increased ionic strengths
resuited in a greater flux decline, while lead ion rejections decreased with decreasing solution
pH and increasing ionic strengths. Such results were related to fow solution pH, suggesting an
increase in fixed charge of proton (H"), decreasing electrical double layer thickness within
membrane, thus allowing increased lead concentration passing through the membrane surface.
solution flux and rejection decreased further at higher ionic strengths, which caused a reduced
negatively charged membrane, and thus decreased rejections. It was aiso found that lead ion for
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PhCl, solution exhibited higher rejections than that of PBINO.), solution.
Key words | flux decline, lead solution, nanofiltration, solution chemistry

INTRODUCTION

Membrane technologies have been widely used in the ficld
of water treatment due to stringent water guality regulations
(Hong & Elimeleeh 1997). They arc efficient technologies to
remove feed sourec water in terms of natural organic matter
{NOM) (Cho ef al. 1999; Kilduft ef al. 2004: Mattara] ef al.
2008), inorganie scalants (Lisdonk et al. 2000; Linet al 2006;
Jarusutthirak et al. 2007). salt solution {(Anne ef al. 2001
Labbez ef al. z003; Childress & Elimelech 2007) and heavy
metals (Mehiguene et al. 1909; Molinari et al. zoor; Ipck
2005; Ku et al. 2005; Turek et al. 2007). Nanofiltration (NY),
one of membrane technologies, s a relatively new mem-
brane process, which is considered to be intermediate
between ultrafiltration (UF) and reverse osmaosis (RO) in
terms of operating conditions. NF membrane processes
operate at pressures between 5¢ and 150psi much lower

dol: 10.2186/ws. HN0.002

Ratana Jivaratananon

Department of Chemical Engineering,

King Mongkut's University of Technoiogy Thonbur,
Hangkok 0140,

Thalland

than RQ (208 to 1,000psi), but higher than UF (10 to
70 psi). At the present time, NE is increasingly applied in the
field of water treatment. For example, ground waters
containing high color due to dissolved organic matter
(DOM), partiaily decompaosed from plant materials, high
hardness from the composition of ealcium (Ca®~) and
magnesium {(Mg? "), and high iron {Fc? ™) and mangancse
{(Mn?7) econcensration. NF can provide high water quality
and large amount of water production in the short period of
opcration. It can give water quality within drinking water
standards. However, membranc fouling causcd by organic
and inorganic substances can be a major factor limiting
more widespread use of membranc technologies, reducing
long-term filtration performance (i.e. water production),

and incrcasing costs for membrane operation through
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higher labor, frequent chemical cleaning, and membrane
replacement.

Inorganic fouling (i.e. ncgative and positive ions) can be
a significant factor that enhances permcate flux decline
during filtration. This may cause an increased concentration
polarization that excceds solubility limit, resulting precipi-
tative fouling of scate-forming species (ie. Ca®t, Mg",
CO%", 8037, and POI"). This has becn recently nvesti-
gated by Jarusutthirak et al. (2067). Molinari ef al. (2vo1)
investigated the interactions between membranes (RO and
NF) and inorganic potlutants (ie. 5i02, NOs, Mn?~, and
humic acid). They showed that increased flux decline was
causcd by the interactions between the memibranes and
other ions. Other factors, which can increase flux declineg,
are solution pH, iontc strength, concentration, operating
conditions, and solution compositions. In addition, inor-
ganic fouling caused by the presence of metal ion in the
aquatic environment has also been a subject of importance
because of its toxitity for human health and cnvironment,
while the applications of nanofiltration for remeving metal
inns are recently limited in terms of solution chemistry
affecting NF performance during fliration period. Howcver,
previous study mentioned the efficient usc of membrane
scparation processes for the control of tead and copper
corrosion (Taylor & Jacobs 1996}, and the feasible recovery
of valuable metals (Ku et al. zo0s). The metallic jons can
aiso produce stable complexes with organic compounds,
which can be more resistant to metal oxidation in natural
water. Lead (Pb? 7, known to occur widely as a result of
fcad plumbing materials and the action of corrosive water. is
onc of interested inorganic materials used in this study due
to relatively low maximum contaminant levels in primary
standards (affecting dircetly to human health) for water
quality regulations (Cotruvo & Vogt 1990}, while there is a
tack of nanofiltration performance of lead solution using
various solution pHs and ionic strengths. Therefore, the
ohjective of this paper was to investigate the effects of
splution chemistry on nanofiltration performance of differ-
ent types of lead solutions. The effects of solution chemistry
{i.e. solution pH and ionic strength) were determined to
evaluate nanofiltration performance of lead solutions. The
results of this study could be uscd to provide system
pertormance of membrane filiration throughout the long
opcrating period.

MATERIALS AND METHODS
Nanofiltration membrane characteristics

An aromatic polyamide thin-film composite NF-90 mem-
brane, produced by Dow-FilmTec., was chosen to determine
the cffect of solution chemistry on nanofittration perform-
ance of difierent types of fead solutions. The molecutar weight
cut-off (MWCO) of the NF-90 membrane was about 90 Da,
indicating a tight NF membrane (Tahaikt ef al. zo007).
According to the manufacturer’s information, the maximum
aperating pressurc is 4,137 .6 kPa, maximum fced flow rate is
3.6m°hr |, maxitnum operating temperature is 45°C and the
operating pH ranges from 1t 12. Free chlorine tolerance is
less than 0.1 ppm. NF-90 is generally a tight NF membrane
with a very high surface roughness (Beltona & Drewes 2005).

In operation, membranc flat sheets were stored in 1%
sodium meta-bisulfite (Na,S,0s) and kept in refrigerator at
4°C to prevent microbial activity. The water flux character-
istics were determined for 30-min operation with clean
water for membrane compaction. The membrane per-
meability was determined from the clean water flux data

at ditfferent operating pressures.

Analytical method

Lead concentration was measured by using atomic absorp-
tion (AA) spectrometry (AAnalyst 200 Version 2, Perkin
Elmer Corp.). Measurements of solution pH, conductivity
and temperature werc made using pH meter (Inolab pH
levet 1, Weilheim, Germany), and conductivity mcter
connceted with temperature (Inolab cond. level 2, Weil-
heim, Genmany), respectively. lonic strengths of samples
were caleulated using a correlation between conductivity
and fonic strength of NaCl standards, 1.5.{M| = 052027

(C; is the ton coneentration and Z, is the number of ions).

Flux decline experiments

The experiments were carried out with three liters of
solution containing lead solutions (PbCi; and Pb(NO3)»)
at fixed concentration about 20mg L', while solution pH
from 4 to 6 and ianic strengths (0.01, 0.05M as NaCl) were
varied in this study. As shown in Figure 1, the experiments
were tested by using a 400-ml dead end membrane filtration
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Figure 1 | schematic diagram of the experimental setup.

apparatus (Amicon 8400, USA) with magnetic stirrer
(LABINCO, LD-12), while the magnetic spin bar fitted
into the cell provided the agitation. While the dead end
filtration systcm may not be practieal compared with the
erossflow one, it has been widely used in the laboratory
study in erder to simulate the situation of severe flux deeline
and fouling. The stirring speed was about 300 rpm.
A membrane sheet was fitted to the cell with the membrane
active arca of 4138cm”® The opcrating pressurc was
employed via high-pressure regulator of nitrogen cylinder.
‘The permcate vahnne was determined during filtration by
using the clectrical balances {Metticr Toledo Monobloc
PB-3002-5. USA). After filtration was terminated, two steps
of cleaning. .c. hydrodynamic cleaning followed by ehemi-
cal cleaning. were performed. For hydrodynamic cleaning,
the menbrane sheet was eleancd with deionized (D1) water,
then followed with chemieal cleaning, acidic solution {using
citric acid) with pH of 4 for 30-min each. After each
cleaning. water fluxes at different operating pressures werce
measured to determine water flux recovery. For the next run
of the experiment, new membrane sheet was used in order
to avaid non-recoverable resistance from the previous
filtration experiment. New membrane sheet was initially
used to characterize clean water flux far membrane
compaction, and subsequently used to determine water
flux after hydrodynamic and chemical cleaning.

Analysis of results

The parameters taken into account were:
The volumetrie flux J. (Lm™?h™' or LMH) was
determined by measuring the volume of permeate collected

in a given time interval divided with membrane arca by

the relation:

Jo = Ly(AP — oAm) = % ()
where L, is the membrane permeability (LMH kPa 'y; AP
is the transmembrane pressure (kPa); o is the osmotic
refleetion coefficient (- ); « is the osmotic pressurc (kPa);
}, and A represent flow rate of permeate (Lh™!) and the
membrane arca {m?), respectively.

The obscrved rejection was cateulated by the following

relation:
°
FR (1 76’3)x100 2)

where €, and C, are the solution coneentrations in the
permeate (mg LY, and in the initial feed solution (mg L™,
respectively.

RESULTS AND DISCUSSION
Water flux characteristics

Befure the experiments, the membrane permeability was
measured after membrane compaction by measuring water
flux as a function af operating pressure using DI water. The
effect of osmotic pressure in Equation (1) was neglected for
DI water. Clean water flux increased lincarly with increascd
operating pressurc with the correlation cocfficient of 0.999.
The slope represents the membrane permeabtlity (L) of
0.0714 LMH kPa~'. The measured membrane permeability
was considered as reference to evaluate cleaning procedure
and water flux recovery after system cleaning.

After filtration cxperiments, the membrane sheets were
cleaned with DI water and followed with citric acid in order
to investigate water flux recovery. As shawn in Figure 2,
the clean water flux after system eleaning of PhCl; and
Ph(NO;), solutions at pH 6 was simitar to clean water
flux after membrane compaction, while water flux
observed after hydrodynamic cleaning was lower when
compared with clean water flux after membrane compaction.
This suggested the inorganic lead resulted in an increase
in flow resistance during filtration experiments. Incrcased

flux caused by chemical cleaning was possibly due to
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Figure 2 | rlean water flux after system clearing; a1 Phe), and () POING g,

protons from acid, which could cfficiently dissolve inor-
ganic lead from the membrane surface, thus enhancing
flux recavery. This suggested thal an increase in water
flux recovery was found for the membrane sheets cleaned
by deionized (clean) water and chemical cleaning agent.
The comparisans of ¢lean waler fluxes were similarly
found with two types of lead solutions. This indicated
that ianic lead (PbCl, and Ph{N();), sotutions) showed less
non-recoverable resistance after system cleaning, indicating
high water tlux recovery.

Effects of solution pH on flux and rejection

The effeet of solution pH on flux decline of PhCl,
and Pb(NOj3), solutions were carried out at pH 4, 5 and
strength 001 M as NaCl
4136 kPa aperating pressure. Feed concentratlion was kept

6 with cuonstant ionic at
at 20mgL™". Figure 3 shows the effect of solution pH on
relative flux. It was evident that the extent of flux decline
increased with increasing solution pH for both PbCl; and

Ph{NO;), solutions. For higher pH, rclative fluxes of

=

wh

o After compaction

1| a aticr hydrodynamic cleaming

A Alter chemical cleaming

]

é

SO 100 150 200 250 300 350 400
Operating pressure (kPa)

Ph{NO5); solution ([u/f. = 0.88 at pH 6) showed higher
flux decline than those of low solution pH ( J./f.e = 0.90 at
pH 4). At low pH, it suggested an increased lixed eharge
of H*, which decreased electrical doubbe layer thickness
within membrane or both, thus decreased concentration at
the membrane surface. Al high pH of 6, the membrane
surface and pores beeame more negatively charged, while
the anions from lead dissociatian was presented in the feed
solution. As a result, the pore size of the membranc was
reduced becausc of the electrostalic repulsion between
neighboring negatively charged groups, thus adopting an
extended canformation (Schaep & Vandecasteele 2001
Teixeira et al. 2005). In addition, the osmolic pressurc
near the membrane surface increased due to high salt
rejection, resulting in a decrease of the net driving pressure,
thus affecting flux reduction. Thesc meehanisms resulted in
a deerease of permeate flux and an inerease in salt rejection
with increased solution pH.

Figure 4 shows the cffect of solution pH on lead ion
rejection. It was observed that lead lon rejcction was
relatively comstant theoughout filtration period. This indi-
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Figure 3 \ Effact of solution pH on relatve flux, @) PHCE and {b) PHINO:)..
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cated that high diffusive transport became more important
than convective transport for the tight NF membrane at
constant operating pressure (413.7 kPa). With increasing
pressure, convective transport becames more important and
retention, therefore, inereases (Mehigucne et al. 1999).
Howcver, concentration polarization can also increase
with increasing pressure, which results in a decrease in
retention. The counteracting contributions of increased
convective transport and increased concentration polariz-
ation result in a constant retention value in the pressure
range of 5-15atm {Mchiguene e/ al 1990} Lead ion
rejection was found to decrcase with deereasing solution
pH. At higher solution pH, menbrane surface became more
negatively charged, thus attracting inore lead ions. Conse-
quently, for PbCl, at solution pH of 56, higher ion
rejeetions were achieved (about 96-98%), while sclution
with low pH exhibited lower rejections about 88 -91%. For
Pb(NOs), solution, the ion rejection percentages of high

Operating time (min}

solution pH (5-6) and jow solution pH of 4 were 91-94%
and 76-81%, respectively. At low pH, the lead ion
rejections of Pb(NO;). solution were lower than that of
PhCt, solution, passibly due to H' jon reducing ncgative
charge at the membrane, reducing double fayer thickness at
the membrane, thus increased membrane pores. This
allowed negatively charged anion ion passing through the
membrane, thus increasing lead ion concentration in the
perineate in order to maintain electroneutrality conditian.
This resutt showed higher lead ion concentration for
Pb{NOs}, solutivn than that for PbCly sclution. Kilduff
et al. {(zoog) concluded that the cffective membranc
permeability increased when a pH was increased, but
the
pressure effects resulting from increased solute rejection.

ftux decreased as a resuft of increased osmotic
Such behavior was in eontrast to looser membranes having
low salt rejection, for which flux increased with pH as a

result of the inercased membrane permeability.,
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Figure & ! Effect of joric strength on lead ion rejection; (a) PHCL; and (B) PRINO L.
Effects of ionic strength on flux and rejection

Figure 5 presents the effeet of {onic strength on relative flux.
The filtration experiments were earricd out at pH 6 with
different ionic strengths of 0.01 and 0.05M as NaCl. The
solution pH of & was sclected in order to avoid lead
precipitation at high pH and high hydrogen ion coneen-
tration at low pH, which could affeet membrane perform-
ance. It was obscrved that the extent of solution flux decline
increased with increasing ionic strengths. This was possibly
due to reduced electrostatic repulsion at the membrane
surface, indicating high flux decline. Many studies indicated
that inercases in jon concentration could reduce the
permeability af charged membranes (Erilessen 1988, Van
Reenan & Sanderson 1g99z; Yaroshchuk & Staude t992;
Mattaraj ef al. 2008), thus reducing permeate flux. The
results showed similar trend for both PhCl, and Ph{(NO:),
solutians with increasing ionic strengths, thus suggesting an

increase in flux decline.
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Figure 6 exhibits the effect of ionie strength on lead ion
rejeetion. It was found that at ionic strength 0.05 M jead ion
rejeetions were lower than those of at 0.01 M. Increased salt
concentration can provide pusitively charged Na™ jon at the
membrane surface, thus decreased electrostatic charge
repulsion. The phenomena ean enhance a reduction in
double layer thickness on the membrane surfacce, thus
affecting a reduction in membrane permeability caused
by increased salt coneentration on the membrane surface.
This can allow lead ion passage through the membrane,

suggesting a decrease in ion rejection.

Effect of co-ion on solution flux decline

The effect of the co-ion of lead solution on flux decline was
carried out with two types of Ph?+ (PbCL; and Pb{NOs),
solutions) at the concentration of 20mgl” ' The exper-
iments were performed at pH 4, 5 and 6 with constant ionie
strength of 0.61 M NaCl and 413.7 kPa operating pressure
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A Lead nitrine(@ pH 6
x Lead chlonde(d pH 4
¥ Lead chlorideqs pH 5
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Figure 7 | Comparisons af co-ion on nanofittration perfarmance of tead solutivn, (@) solative flux and (b rejection.
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during filtration. Figure 7 shows the comparisons of co-ion
on nanofiltration performance of lcad solution. It was
observed that Pb(NOs); solution showed higner flux
decline than PbCls solution, while PbCl, solution presented
higher rejections than Pb(NOs), solution. Since the NF
membrane is more negatively charged, the monovalent
anion of Cl™ ion is more excluded than NOs ion resulting
in greater rejection. The lead ion rejections for PhCl
solution showed higher than those of Pb(NO;); solution. [t
was possibly caused by higher charge repulsion of nega-
tively charged Ci~ ion, when compared with negatively
charged NQ; ion, thus increased lead concentration for
PhCl, solution in order to satisfy an clectroncutrality
condition. The lead ions werce retained on the membranc
surface which resulted in high lead rejection.

In addition, Mchiguence et al (1999) concluded that
the retention of metallic cations was enhanced when the
charge valeney of associated co-ion increased. These obser-
vations were explained by Donnan exclusion phenomcena
(Donnan 1995}, and were described by thermodynamic
cguitibrium. Conscgquently, as the membranc is negatively
charged, co-ions are cxcluded and cations were also
rejected in order to ensure electroneutrality at both side of
the membrane. This was an important feature it nanofil-
tration (Mehigucne et al 1999). Moreover, the difference
cffects in hydration encrgy of co-ions (Cl7 and NO3) coutd
be also cxplained for this experiment. Chloride ion has
targer hydration cnergy than nitrate ion, thus resulting in
greater rejection (Mehiguene ef al. 1999}, Simitar results
were observed by Choi et al. (zo001). The rejection ratio
between chloride and nitrate ion was determined about
1.08 tor RO membrane (Amiri & Samici 2007}, while the
rejection ratio was about 1.14 for NF-90 niembrane
(Tahaikt et al. 2007) and 1.45 [or the loose NF Nanomax
50 (MWCO about 300) (Frares ef al. z005).

CONCLUSIONS

Lead ion rejection and flux decline from aqueous solution
by nanefiltration membrane were strongly influenced by
splution pH and ionic strengths. Flux decline of filtration
experiments conducted for both PbCl, and Pb(NO3)»
solutions increased with increased solution pH. Solutions

having high solution pH showed greater flux decline than
those having low solution pH, while lead rejections
exhibitcd higher rejection. Increased ionic  strengths
resulted in a greater increase in flux deeline. Lead ion
rejection was found to be decrcased with decreasing
solution pH and increasing ionic strengths. The experimen-
tal results of the study can be applied to improve system
performance by adjusting system feed solution (i.e. avoiding
tow solution pH and high ionic strength} in order to control
high rejection efficicrey and high water production

throughout the long operating period.
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