บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาพฤติกรรมการกระจายตัวของอุณหภูมิในน้ำมันความหนืดสูงที่ถูกบรรจุอยู่ภายในถัง การถ่ายโอนความร้อนจะมาจากตัวที่ความร้อนแบบทรงกระบอกความแน่นวนภายในถังบริเวณน้ำมันนั้น ๆ การถ่ายโอนความร้อนเป็นการพยากรณ์แบบ Rayleigh Number (Rayleigh Number, Ra) เป็นตัวกำหนดถึงรูปแบบของการกระจายความร้อน จากการศึกษาพฤติกรรมถังน้ำมันได้ทำการเปรียบปริมาณในรูปแบบของไหลเชิงพลศาสตร์ (Computational Fluid Dynamics, CFD) ด้วยวิธีเปรียบปริมาณสรุปเนื่องจากถูกสอดคล้องกับพฤติกรรมการกระจายตัวของความร้อนและวัสดุอุณหภูมิในจุดที่ดึงจุลจักรและนำไปเปรียบเทียบกับผลการทดลองของงานวิจัยนี้ จากการศึกษาโดยใช้โปรแกรม Fluent พบว่าการจำลองการไหลแบบเรียงหนา (Laminar) ทำให้เกิดการกระจายความร้อนที่เข้ากันได้โดยทั่วไปจากการจำลองทรง CFD พบว่าในปัจจุบันการกระจายตัวของอุณหภูมิในที่พักอาศัยอยู่ที่น้ำมันและไหลเดียวกันกับผลการทดลองทำให้เกิดอุณหภูมิจะสูงขึ้นอย่างรวดเร็วที่กว่าในกระบวนการที่ถูกกันส่วนต่าง ๆ

คำสำคัญ การกระจายความร้อนแบบทรงกระบอก น้ำมันความหนืดสูง วิธีการคำนวณของไหลเชิงพลศาสตร์
Abstract

The objective of this research is to study the behavior of temperature distribution in the high viscosity oil storage tank. The heat transfer is laminar natural convection from the horizontal cylinder heater in a heavy fuel oil storage tank. The laminar model appears in the range of Rayleigh number (Ra). The computational fluid dynamics (CFD) that is the finite volume method is employed to solve the problem to compare with the experiments in the literature. From fluent application the laminar model and constant heat flux source implemented the results of the temperature distribution against times from CFD and have a good agreement compared to the reference experimental results in which the temperature at the top of the storage tank increases more rapidly than the bottom.

Keywords: Natural convection, High-Viscosity Oil, Computational Fluid Dynamics

บทนำ

ในปัจจุบันข้อพิจารณาด้านอุตสาหกรรม ที่น่าสนใจได้ที่เป็นปัจจัยที่สำคัญอย่างมากในพื้นที่อุตสาหกรรมนี้ ที่จะใช้ในการจัดเก็บสินค้าในสิ่งก่อสร้าง อุตสาหกรรมนี้ มีด้านที่มีความสำคัญอยู่ในอุตสาหกรรมนี้ นั้นมันถือเป็นข้อพิจารณาที่สำคัญอย่างยิ่งโดยเฉพาะ น้ำมันเตา (Fuel oil) ซึ่งมีลักษณะทางกายภาพโดยทั่วไปเป็นน้ำมันเชื้อเพลิงที่หนัก มีจุดสุญญามณีและใช้ในโรงอุตสาหกรรม โรงไฟฟ้า และเรือดินสุรทัด นอกจากนี้ยังเป็นน้ำมันเตา (Light fuel oil) น้ำมันเชื้อเพลิง (Medium fuel oil) และน้ำมันเตา (Heavy fuel oil) (CONCAWE, 1998) จากงานวิจัยที่ได้ศึกษาพบการกระจายตัวของอุณหภูมิในถังบรรจุน้ำมันเตา ขนาดนี้ซึ่งเป็นน้ำมันเตาที่มีความหนืดสูงที่สุด มีค่าประมาณ 8,000 cSt ที่อุณหภูมิ 20 องศาเซลเซียส การทดลองใช้ถังบรรจุน้ำมันเตาในปริมาณที่สูงสำหรับงานในชั้นอุตสาหกรรมจึงต้องมีการยึดถือถึงการณ์น้ำมันเตาใช้ทำให้น้ำมันเตาที่มีความหนืดและแข็งตัวมากขึ้น หลักนี้

การทดลองวิธีการผ่านอุณหภูมิในถังบรรจุน้ำมันเตาซึ่งใช้ในการควบคุมอุณหภูมิในถังบรรจุน้ำมันเตาได้ใช้โดย Rangel-German et al., 2004) งานวิจัยนี้ได้สร้างแบบจำลองทางคณิตศาสตร์โดยใช้แบบจำลองพื้นความหนืดอย่างขั้นตอนที่ใช้ในทางคณิตศาสตร์ (Skipper, 1958) ที่ใช้ทำการศึกษาการกระจายตัวของอุณหภูมิในถังบรรจุน้ำมันเตาที่มีความหนืดสูงโดยทดลองดิ่งน้ำมันเตาที่บรรจุอยู่ภายในถังบรรจุสีเหลืองด้วยวิธีที่ควบคุมแบบจำลองแบบจำลอง 2 มิติ และ 3 มิติ และทำการ
วิเคราะห์หาพัดลมและตัวแปรที่เหมาะสมเพื่อให้ได้ผลการกระจายตัวของอุณหภูมิที่ใกล้ชิดกับการทดลอง

การศึกษาการย้อนทางความร้อนและการหาค่าการกระจายตัวของอุณหภูมิ โดยเฉพาะการพยากรณ์แบบธรรมชาติ (Natural convection) เป็นเรื่องที่น่าสนใจในหลายสาขาวิชาของวิทยาศาสตร์และวิศวกรรมศาสตร์ ด้วยเหตุนั้น ในการออกแบบอุปกรณ์แยกเปลี่ยนความร้อน (Heat exchanger) ในแบบถังน้ำ (Boiler) เครื่องควบแน่น (Condenser) และ ห้องน้ำร้อน (Radiator) เป็นต้น ต้องอธิบายวิเคราะห์การย้อนทางความร้อน เพื่อใช้ในการกำหนดขนาดของชิ้นส่วนต่างๆ ในอุปกรณ์แยกเปลี่ยนความร้อนดังกล่าว หรือแม่นยำในการออกแบบเครื่องปฏิกรณ์ปรมาณู (Nuclear reactor) ต้องอาศัยความรู้เกี่ยวกับการย้อนทางความร้อนเพื่อให้ได้ผลขนาดของแท่งเชื้อเพลิงที่เหมาะสม เพื่อป้องกันความเสียหายที่อาจเกิดขึ้น (Ozisik, 1985) การพยากรณ์แบบธรรมชาติเป็นการย้อนทางความร้อนอธิบายแบบหนึ่งที่เกิดจากความแตกต่างของอุณหภูมิระหว่างไหลภายนอกของตัวทำความร้อน การเคลื่อนที่ของไหลเกิดจากแรงลอยตัว (Buoyancy force) ในของไหลใดๆที่ไม่มีแรงภายนอกใดๆ มากระทบ ซึ่งเป็นผลมาจากความแตกต่างของความหนืดแน่นอันเนื่องมาจากความแตกต่างของอุณหภูมิของสองไหล เมื่อของไหลได้รับความร้อนและมีอุณหภูมิที่สูงขึ้นจะทำให้ไหลลอยขึ้น เบี่ยงจากอุณหภูมิที่ความหนืดแน่นมากกว่าที่อยู่บริเวณโดยรอบบริเวณดังกล่าวต้องมีอุณหภูมิที่สูงขึ้น เพราะการทำความร้อนแบบธรรมชาติ นั้นเกิดขึ้นได้ทั้งแบบเรียงระดับ (Laminar) และแบบขยันปตัจจ (Turbulent) โดยที่มีการพิจารณาได้ตัวแปรไมล์บี (Laminar) และแบบขยันปตัจจ (Turbulent) โดยที่มีการพิจารณาได้ตัวแปรไมล์บี (Laminar) และแบบขยันปตัจจ (Turbulent) โดยที่มีการพิจารณาได้ตัวแปรไมล์บี (Laminar) และแบบขยันปตัจจ (Turbulent) โดยที่มีการพิจารณาได้ตัวแปรไมล์บี (Laminar) และแบบขยันปตัจจ (Turbulent)

\[Ra = Gr Pr \]

\[Gr = \frac{g \beta D^3 (T_s - T_a)}{v^2} \]

\[Pr = \frac{\mu C_p}{k} \]

(1)

(2)

(3)
สูตรการและวิธีการทดลอง

1. ชุดทดลองของ Skipper

งานวิจัยปัจจุบันนี้ได้นำผลที่ได้จากการทดลองของ Skipper ตั้งแสดงในภาพที่ 1 ที่ให้ท่านำศักย์เกี่ยวกับการพยายามร่อนแบบธรรมดาในน้ำมันความหนืดสูงกับน้ำมันแตกมาใช้ถังถังแล้วปรับปรุงเพิ่มเติมแพร่กว้างสู่จากการทดลอง CFD การทดลองประกอบด้วยบรรจุทรัพส์สั่นระลึกสูงและผู้ควบคุมฉนวนขนาดกว้าง 1.22 เมตร ยาว 0.61 เมตร ฐาน 1.22 เมตร และตัวควบคุมการร่อนแบบบรรจุบรรจุสูงจากก่อนแต่งเป็นความยาว 0.5842 เมตร มีขนาดเส้นผ่านศูนย์กลาง 5.08 เซนติเมตร ซึ่งได้ใช้เวลาในการทดลองทั้งหมด 33 ชั่วโมง โดยทำการวัดค่าอุณหภูมิทั้งบนและด้านล่างของชุด HN, P, Q, R, S, T, U และ V ตั้งแสดงในภาพที่ 2

(1) Cooling-water inlet valve
(2) Inlet swirl chamber
(3) Inlet thermocouple
(4) Heater
(5) Probe with horizontal and vertical traverse
(6) Dip stick
(7) Cooling chamber
(8) Outlet swirl chamber
(9) Outlet thermocouple
(10) Cork lagging

ภาพที่ 1 ชุดทดลองของ Skipper
ภาพที่ 2 แบบจำลองที่ใช้ทดลอง

2. แบบจำลอง CFD

งานวิจัยนี้ได้นำโปรแกรม Fluent มาวิเคราะห์ปัญหาในแบบ 2 มิติและ 3 มิติ เพื่อทำ การเปรียบเทียบคุณภาพได้ถึงกึ่งขั้นตอนของผลกระทบตัวของอุณหภูมิ โดยทำแบบจำลองแบบ 2 มิติเนื่องจากปัญหาของอุณหภูมิความสมมาตรและเพื่อความสะดวกในการสร้างกริด ส่วนแบบจำลองแบบ 3 มิติ แม้จะมีความสม่ำเสมอและข้อมูลมากกว่าค่าที่มีปัญหาที่ใกล้เคียงกล่าว บรรจุภัณฑ์มากกว่า โดยทำแบบจำลองการพยากรณ์แบบกระดาษในลิ้นบรรจุภัณฑ์แบบที่เหมือนกันของบรรจุภัณฑ์หมวดจะถูกนิยมกันอย่าง มากมายทำให้มีการสูญเสียความร้อน (Adiabatic) ดั่งที่ความร้อนจะของไหลมีอุณหภูมิและ เงื่อนไขคัดสูงในตารางที่ 1 และเมื่อนำแบบจำลองที่ใช้ทดลองมาสร้างแบบจำลองทาง CFD ด้วยโปรแกรม Gambit จะได้แบบจำลองและออกแบบของกระดาษในแบบ 2 มิติดีและ 3 มิติคัดสูงใน ภาพที่ 3 และ 4 ตามลักษณะ โดยทำแบบจำลองของกระดาษที่ความและเปลี่ยนต่างๆ ตาม ความสามารถของคอมพิวเตอร์จนกระทั่งได้ความละเอียดของกระดาษที่ถูกว่าเพียงพอโดยมี จานวนกริดทั้งหมดที่ใช้ในการคำนวณแบบ 99,868 เซลส์ ในแบบ 2 มิติ และขนาด 406,538 เซลส์ ในแบบ 3 มิติ
ตารางที่ 1 ข้อมูลที่ใช้กับโปรแกรม FLUENT

<table>
<thead>
<tr>
<th>ตัวแปร</th>
<th>ค่าที่เก็บ (องศา)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ตัวทำความร้อน (T_r)</td>
<td>410.372 (องศา)</td>
</tr>
<tr>
<td>น้ำมันหน้า (T_o)</td>
<td>288.705 (องศา)</td>
</tr>
</tbody>
</table>

ภาพที่ 3 ลักษณะการไหลของน้ำมันของ 2 มิติ
ในส่วนของโปรแกรม Fluent จะมีฟังก์ชันการทำงานคู่มายาซึ่งจะต้องป้อนค่าที่สำคัญและเที่ยวของกันลงไปเพื่อให้โปรแกรมประมวลผลได้อย่างถูกต้องและแม่นยำที่สุดโดยไม่เกิดการลู่ออก (Diverge) ของปัญหา ซึ่งจะเป็นค่าที่ถูกต้องนั้นที่ในการจำลองแบบ 2 มิติและ 3 มิติ เมื่อทำการพิจารณาผลลัพธ์ที่ได้จากการจำลองทาง CFD ปริมาณที่เก็บการไหลของ Skipper จะให้ฟังก์ชันที่สำคัญๆ ประกอบไปด้วย ค่าความถี่ขวาง เมืองกันระหว่างความตันและความรู้สึกแก่คำวิวิธี SIMPLEC ผลกระทบจากกำลังไฟของลมเป็นแบบฐานร่ม (Laminar) วิธีที่ใช้ในการประมาณค่าที่ Preto ใช้สำหรับค่าความตัน Second-Order Upwind ใช้สำหรับสมการไอนิเมติคและ Third-Order MUSCL ใช้สำหรับสมการพลังงาน โดยที่ฟังก์ชัน Boussinesq ได้ถูกนำมาใช้หวังจะปรับหนึ่งในจำนวนการกลั่นเจาะของวัสดุเพื่อให้เหมาะสมกับความหนาแน่นของกันพื้นที่ในส่วนของคู่ม่ากับอันดับของกำลังลากที่ต้องใช้ในโปรแกรม Fluent จะหาจากค่าที่เป็นอนุกรม (Film Temperature) ระหว่างค่าที่ความร้อนกับกันพื้นที่คำวิ่ง ประกอบไปด้วย ค่าความคูลตัวเรือนจำเพาะ (Cp : Specific heat) คำนวณประสิทธิการในการความ
รูป (k: Thermal conductivity) และค่าสัมประสิทธิ์ของการขยายตัวซึ่งความร้อน (β: Volumetric coefficient of thermal expansion) จะกำหนดให้เป็นค่าคงที่ ดังแสดงในตารางที่ 2 ตัวแปรความหนืดไนโตรคิค (μ: Dynamic viscosity) ที่มีผลต่อการไหลตัวของน้ำมันตาจะถูกกำหนดให้มีการเปลี่ยนแปลงขึ้นอยู่กับอุณหภูมิ (T: Temperature) ซึ่งหากกำหนดให้เป็นค่าคงที่ ได้จะทำให้ไม่สามารถประมาณผลตัวแปรรวมได้ เนื่องจากเกิดการซิลวา (Diverge) ของปัญหา โดยทำให้การแก้สมการค่าความหนืดไนโตรคิคกับอุณหภูมิให้อยู่ในรูปของสมการโพลีโนเมียล (Polynomial) และได้ทำการแบ่งสมการออกเป็น 3 ช่วง อุณหภูมิที่ครอบคลุมทั้งระบบที่ 1 ช่วง 283 - 310 องศาเซลเซียส แสดงดังสมการที่ 4 ช่วง 310 - 350 องศาเซลเซียส แสดงดังสมการที่ 5 และ ช่วง 350 - 420 องศาเซลเซียส แสดงดังสมการที่ 6 และเมื่อพิจารณาสมการที่ 1 จะได้ค่า $Ra = 1.003 \times 10^7$ พบว่าการจัดการพื้นที่ความร้อนแบบบรรจุขนาดนี้เป็นแบบเบาะบน เนื่องจากค่าด้วยเลขเต็มองุณที่มีค่าน้อยกว่า 10^9

$$
\mu(T) = 1.61 \times 10^{-4} T^4 - 0.195 T^3 + 88.39 T^2 - 17796.13 T + 1.34 \tag{4}
$$

$$
\mu(T) = 8.79 \times 10^{-7} T^4 - 0.00119 T^3 + 0.609 T^2 - 138.38 T + 11782.29 \tag{5}
$$

$$
\mu(T) = 8.07 \times 10^{-9} T^4 - 1.29 \times 10^{-5} T^3 + 0.0078 T^2 - 2.1 T + 212.82 \tag{6}
$$

ตารางที่ 2 คุณสมบัติทางกายภาพของน้ำมันตา

<table>
<thead>
<tr>
<th>คุณสมบัติ</th>
<th>ค่า</th>
</tr>
</thead>
<tbody>
<tr>
<td>ความหนาแน่น ρ (kg/m3)</td>
<td>940.40</td>
</tr>
<tr>
<td>ความดุความร้อนจั่วเฉพาะ C_p (J/kg-K)</td>
<td>1977.57</td>
</tr>
<tr>
<td>สัมประสิทธิ์การถ่ายความร้อน k (W/m-K)</td>
<td>0.115</td>
</tr>
<tr>
<td>สัมประสิทธิ์ของการขยายตัวซึ่งความร้อน β (K$^{-1}$)</td>
<td>0.00060096</td>
</tr>
<tr>
<td>ความหนืดไนโตรคิค μ (m2/s)</td>
<td>1.51x10$^{-4}$</td>
</tr>
<tr>
<td>ค่าตัวแปรหลักเป็น Pr</td>
<td>2440.66</td>
</tr>
</tbody>
</table>
ผลการวิจัย

จากการจำลองทาง CFD เมื่อพิจารณาแบบจำลอง 2 มิติและ 3 มิติ จะพบว่าน้ำมันเพาะที่อยู่น้ำมันเพาะในถังบรรจุในขณะเริ่มต้น จะได้รับการกลับกลืนเร็วจากด้านท้ายความร้อนในถัง ของน้ำมันเพาะจะเริ่มมีการเคลื่อนตัวเกิดขึ้นอย่างช้าๆ ที่บริเวณเหนือด้านท้ายความร้อนและทำให้เกิดแรงดันด้านข้างน้ำมันเดือนหลังที่เริ่มไปถึงส่วนบนของถังแล้วเคลื่อนตัวออกจากด้านข้างและเคลื่อนที่ยังสู่ด้านล่างของถังทำให้เกิดการหมุนวนที่บริเวณด้านข้างของถัง โดยที่การเคลื่อนตัวของน้ำมันเพาะจะเกิดขึ้นในถังและน้ำมันเดือน ดังแสดงในภาพที่ 5 ของแบบ 2 มิติ และภาพที่ 6 ของแบบ 3 มิติ ทำให้เกิดการขยับความร้อนและเกิดการกระจายตัวของอุณหภูมิไปทั่วถังสูง ปรากฏของแบบ 2 มิติ และภาพนั้นคัดตอบแบบ 3 มิติ ที่เวลา 1 ชั่วโมง ดังแสดงในภาพที่ 7 และ 8 ตามลำดับ ซึ่งพบว่ามีลักษณะที่คล้ายกัน

ภาพที่ 5 แสดงเหตุการณ์ความร้อน (ระดับวินิจฉัย) เวลา 1 ชั่วโมงของการจำลองแบบ 2 มิติ
ภาพที่ 6 แสดงแนวพระมหาวัฒน์ (เมตร/วันที่) ที่เวลา 1 ชั่วโมงของการจ่าของแบบ 3 มิติ

ภาพที่ 7 แสดงการกระจายตัวของอุณหภูมิ (องศา屾) ที่เวลา 1 ชั่วโมงของการจ่าของแบบ 2 มิติ
ภาพที่ 8 แสดงการกระจายตัวของจุลทรัพย์ (คลื่นวิ) ที่เวลา 1 ชั่วโมง ของการจำลองแบบ 3 มิติ

เมื่อพิจารณาในช่วงเริ่มต้นของการกระจายความร้อนพบว่าเมื่อมีจุลทรัพย์ในตัวกว่าศูนย์ความร้อนจะทำให้เกิดการลักษณะที่ตัวของสิ่งที่เป็นสิ่งที่เป็นมือการกระจายความร้อนเกิดขึ้นอย่างรวดเร็วทำให้ส่วนบนของจุลทรัพย์ที่มีจุลทรัพย์สูงสุดจะสูงกว่าจุดที่ต่ำกว่าจุดในแนวเส้นนั้นจึงค้นพบว่าเป็นบริเวณที่มีจุลทรัพย์สูงสุดซึ่งจะสูงกว่าจุดที่ต่ำกว่าจุดที่อยู่ต่ำกว่าจะมีจุลทรัพย์ที่สูงกว่า

เมื่อเวลาในการกระจายความร้อนเพิ่มมากขึ้น นั่นหมายความร้อนที่อยู่สูงโร้ตตัวความร้อน เนื่องจากเกิดการกระจายตัวของจุลทรัพย์อย่างทั่วถึง ที่บริเวณส่วนบนของจุลทรัพย์จะต่ำเป็นจุลทรัพย์สูงกว่าจุดที่ต่ำกว่ามากในแนวเส้นเล็กน้อยที่นั้นประเภทจุลทรัพย์สูงสุดจุลทรัพย์ส่วนตัวจะต่ำกว่าจุดที่อยู่ต่ำกว่าจะมีจุลทรัพย์สูงสุดซึ่งจะสูงกว่าจุดที่ต่ำกว่าจุดที่อยู่ต่ำกว่าจะมีจุลทรัพย์ที่สูงกว่า ซึ่งเมื่อพิจารณาจากผลและจากการกระจายความร้อน
และการกระจายตัวของอุณหภูมิที่เวลา 16 ชั่วโมง ของการจำลองแบบ 2 มิติ ดังแสดงในภาพที่ 9 และ 10 ตามลำดับ และการจำลองแบบ 3 มิติ ดังแสดงในภาพที่ 11 และ 12 ตามลำดับ พบว่า อุณหภูมิบริเวณส่วนบนของพื้นที่ผู้หนึ่งตัวทำความร้อนจะมีมากที่สุดต่ำกว่า ในการจำลองแบบ 2 มิติ อุณหภูมิของพื้นที่ผู้หนึ่งตัวทำความร้อนจะมีมากกว่าความร้อนของพื้นที่ผู้หนึ่งตัวทำความร้อนสูงกว่าที่จะสูญเสียไปสู่อากาศผ่านการระบายความร้อนแบบ 3 มิติ ซึ่งจะมีการกระจายความร้อนยิ่งกว่าจะเป็นสาเหตุที่ทำให้อุณหภูมิความแตกต่างกันและเกิดความคลาดเคลื่อนจากการทดลอง

ภาพที่ 9 แสดงแนวค่าความเร็ว (เมตร/วินาที) ที่เวลา 16 ชั่วโมงของการจำลองแบบ 2 มิติ
ภาพที่ 10 แสดงการกระจายตัวของอุณหภูมิ (เซลวิน) ที่เวลา 16 ชั่วโมง ของการจัดอบแบบ 2 มิติ

ภาพที่ 11 แสดงแนวทิศความเร็ว (เมตร/วินาที) ที่เวลา 16 ชั่วโมงของการจัดอบแบบ 3 มิติ
ภาพที่ 12 แสดงการกระจายตัวของอุณหภูมิ (คลิปวิน) ที่เวลา 16 ชั่วโมง ของการจำลองแบบ 3 มิติ

จากการศึกษาพฤติกรรมการกระจายตัวของอุณหภูมิกับเวลาในนั้นมันจะทำให้ได้การแผนแสดงการทดลองของ Skipper ดังแสดงในภาพที่ 13 ที่มาจากเรียนที่เกี่ยวกับการแสดงผลที่ได้จากการจำลองทาง CFD ซึ่งจากการแผนแสดงการทดลองของ Skipper เมื่อมีการวัดค่าอุณหภูมิที่จุด P, Q, R, S, T, U และ V ซึ่งเป็นจุดที่อยู่กว้างกว่าจุดหน้าของตัวทำความร้อนจะได้ค่าอุณหภูมิที่จุดข้างสูงและมีแนวโน้มที่จะสูงขึ้นเรื่อยๆ เมื่อเวลารอยู่ท่าที่ความร้อนเพิ่มนั้น ในขณะที่จุด BN ซึ่งเป็นจุดที่อยู่กว้างกว่าจุดหน้าของตัวทำความร้อนจะมีอุณหภูมิที่ต่ำขึ้นกว่าจุดอื่นและมีแนวโน้มที่จะต่ำลงขึ้นเรื่อยๆ เมื่อเวลาในการทยอยความร้อนจะเกิดขึ้นอย่างรวดเร็วที่บริเวณด้านบนของตัวทำความร้อนตามลำดับและการจำลองความร้อนจะแสดงเมื่อระบบที่สุ่มการระเหิด

จากการแผนแสดงผลที่ได้จากการจำลองทาง CFD ของการจำลองแบบ 2 มิติและ 3 มิติดังแสดงในภาพที่ 14 และ 15 ตามลำดับ พบว่าที่จุด P, Q, R, S, T, U และ V อุณหภูมิที่วัดจากการจำลองแบบ 2 มิติมีค่าเท่ากับที่ได้ต่ำลงและมีค่าเปลี่ยนแปลงความแตกต่างที่ค่อนข้างน้อยเมื่อนำมาเปรียบเทียบกับการจำลองผลที่ได้จากการทดลองของ Skipper ซึ่งจะแตกต่างกับการจำลองแบบ 3 มิติที่มีค่าต่ำลงต่ำกว่า และมีค่าเปลี่ยนแปลงความแตกต่างที่ค่อนข้างมากซึ่งที่
สอดคล้องกับพยากรณ์ระยะยาวตัวอย่างอุณหภูมิที่จำลองได้ สำหรับปลูก HN ค่าอุณหภูมิที่วัดได้จะไม่แตกต่างกันมากนัก ค่อนข้างที่จะใกล้เคียงกัน แม้ว่าการจำลองทาง CFD แบบ 2 มิติ จะมีค่าอุณหภูมิที่ค่อนข้างสูงกว่าการทดลองเนื่องมาจากในการจำลองทางคอมพิวเตอร์จะกำหนดค่าอุณหภูมิของตัวทำความร้อนเป็นค่าคงที่ ทำให้มีการถ่ายเทความร้อนที่อยู่ต่อกันคงที่และเวลาจะผ่านไปยังช่วงเวลาที่ 16 ต่างจากภาวะทดลองซึ่งเวลาที่อุณหภูมิถ่ายเทความร้อนของตัวทำความร้อนก็จะลดลง การถ่ายเทความร้อนสู่ส่วนต่างของลักษณะสูงก็จะลดลง เนื่องจากพิจารณาจากพฤติกรรมการกระจายตัวของอุณหภูมิโดยรวมทั้งหมดแล้วจะพบว่ามีแนวโน้มไปในทางเดียวกัน ทำให้คือปริมาณที่ผ่านหนึ่งตัวทำความร้อนจะมีอุณหภูมิสูงขึ้นเรื่อยๆ เมื่อเวลาเพิ่มมากขึ้น เนื่องจากเป็นบริเวณที่มีอัตราการถ่ายเทความร้อนที่สูง สำหรับปริมาณที่ผ่านตัวทำความร้อนจะมีอุณหภูมิสูงขึ้นเนื่องจากเป็นบริเวณที่มีอัตราการถ่ายเทความร้อนต่อกัน

ภาพที่ 13 กรา프แสดงความสัมพันธ์ระหว่างอุณหภูมิของบัลลังก์เวลาที่ได้จากการทดลองของ Skipper
ภาพที่ 14 กราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิของน้ำมันแตกับเวลาที่ได้จากการจำลอง
ทาง CFD แบบ 2 มิติ

ภาพที่ 15 กราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิของน้ำมันแตกับเวลาที่ได้จากการจำลอง
ทาง CFD แบบ 3 มิติ
จากภาพแสดงผลที่ได้จากการจำลอง CFD มีความแตกต่างจากผลที่ได้จากการทดลองของ Skipper เมื่อใช้โปรแกรม Fluent มีฟังก์ชันการทำการจำลองต่างๆอยู่มากมาย ดังนั้นการเลือกฟังก์ชันที่เหมาะสมและถูกต้องสำหรับงานในลักษณะของการพยากรณ์แบบธรรมชาติจึงเป็นงานที่ต้องจับข้อมูลและวิเคราะห์ข้อมูลที่ได้มาเชิงลึกซึ่งมีความสำคัญ เข้ากัน เมื่อจากคุณสมบัติทางคลื่นที่สามารถพยากรณ์ได้เป็นไปตามที่ได้ แต่คุณสมบัติทางคลื่นจะต้องคิดก่อนให้ถูกในรูปของสมการที่เป็นฟังก์ชันกับอุณหภูมิ จากการศึกษาในงานวิจัยที่ทำให้ทราบถึงสิ่งที่สำคัญของฟังก์ชันและคุณสมบัติของของไหลที่เหมาะสมซึ่งสามารถนำไปใช้ศึกษาในงานวิจัยอื่นๆที่เกี่ยวข้องได้ เช่น ศึกษาโดยเปลี่ยนค่าอุณหภูมิของตัวทำความร้อน (Tc)เป็นค่าต่างๆ การเปลี่ยนขนาดและรูปร่างของตัวทำความร้อนหรือรูปร่างของตัวจุดเชิงทางที่จะช่วยให้การผ่านน้ำมีประสิทธิภาพขึ้นให้อุณหภูมิมีแรงดันได้อย่างทั่วถึงและรวดเร็วท่าทางให้ ประหยัดเวลามากขึ้น หรือเมื่อกระท่างจากสถานะที่จะศึกษาพานุกรมการกระทำตัวของของเหลวในที่นี้ที่มีผลกระทบของการพยากรณ์แบบธรรมชาติเป็นแบบพบเรียนที่สามารถนารุปแบบของงานวิจัยในปรับปรุงและประสิทธิ์ใช้ได้และจากผลของแบบจำลอง 3 มิติที่ได้ผลค่าเฉลี่ยจากที่ทำขั้นตอนวิธีถูกต้องในกราฟรูปแบบจำลอง 3 มิติที่ได้จากการวิเคราะห์แสดงถึงถูกต้องที่สุดว่าความสามารถของคอมพลิเคชัน ซึ่งสามารถสร้างกราฟได้เป็นรูปวางแผนที่สมบูรณ์และมีความละเอียดที่สูงพอที่อาจารย์ทำให้ผลที่ได้ตรงกับการทำงานมากขึ้น

สรุปผลการวิจัย

1. การศึกษาพานุกรมการกระทำตัวของอุณหภูมิในน้ำมันสำหรับหน้าที่เกี่ยวกับการ ทำความร้อนจากตัวทำความร้อนแบบทรงกระบอกทางแนวรบบนภายในบรรจุถังที่เหลือที่มีลักษณะของทางพยากรณ์แบบธรรมชาติเป็นแบบพบเรียนสามารถนำวิธีการจำลองทาง CFD มาใช้ในการที่มีการจำลองได้

2. แนวทำนองการทำงานวิศวกรรมแบบเน้นที่ใช้พันธุ์ที่ได้จากการจำลองทาง CFD ไม่ค่อยมีความสอดคล้องกับผลการแสดงของ Skipper มากกว่าแบบ 3 มิติ ซึ่งสรุปได้ว่า นวิธีจำลองสามารถใช้งานจำลองแบบ 2 มิติคือเพียงพอที่จะจำลองการทำงานในลักษณะนี้ได้

3. ค่าความเหนียวของน้ำมัน (Dynamic viscosity) จะถูกกำหนดให้มีการเปลี่ยนแปลงตาม อุณหภูมิซึ่งอยู่ในรูปของสมการฟิวชันที่เป็นตัวแปรสำสายที่ทำให้ผลที่ได้จากการจำลอง
ทาง CFD มีคำภูมิพื้นที่ที่ได้จากการทดลองไม่สามารถใช้เป็นคำสรุปที่ได้เนื่องจากจะทำให้เกิดการผูกต้อง (Diverge) ของปัญหาทำให้โปรแกรม Fluent ประมวลผลไม่ได้

กิจกรรมبرنامجประมวล

คณะผู้บริหารของศูนย์วิชาการศึกษาระบบแก๊ส มหาวิทยาลัยรังสิต ที่สนับสนุนทุนสำหรับงานวิจัยนี้

เอกสารอ้างอิง

สมศรี จงรุ้งเรือง. 2542. ระเบียบวิธีการประเมินความร้อน. กรุงเทพฯ: โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย. ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

