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This paper describes a theoretical analysis of a heat-poweted refrigeration cycle, a combined Rankine-
vapour-compression refrigeration cycle. This refrigeration cycle combines an Qrganic Rankine Cycle
and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as
60°C and can produce cooling temperature as fow as —10°C. In the analysis, two combined Rankine-
vapour—compression refrigeration cycles were investigated: the systemn with R22 and the system with
Ri34a. Calcutated COP values between 0.1 and 0.6 of both the systerns were found.

© 2010 Elsevier Ltd. All rights reserved.

1. Intreduction

The energy demanded for refrigeration and air-conditioning
appliances is one of the world's heaviest. The most widely used
refrigeration system is a vapour—-compression refrigeration cycle.
In this cycle, a mechanical compressor is used to elevate the refrig-
erant pressure and is the part that highly consumes energy, mostly
in the form of electrical energy.

At present, world energy consumption is increasing steadily.
Alternative systems that use less electricity or use other forms of
energy have been proposed. Heat-powered refrigeration cycle is a
refrigeration system where the energy input required to drive
the system is mainly in the form of heat with a very smatl amount
of mechanical or electrical energy, usually required to circulate the
working fluid. An absorption refrigeration cycle [1] and a jet refrig-
eration cycte [2] are examptes of heat-powered refrigeration sys-
tems. These two systems can be operated with low grade
thermal energy in the range between 100 and 200°C. They can
provide COP value between 0.5 and 1 for absorption systems and
0.2-0.6 for jet refrigeration systems. With the use of these two
heat-powered refrigeration systems, low grade thermal energy
(usually waste or free) can be converted to useful refrigeration.

However, both the absorption and the jet refrigeration systems
are not suitable for thermal energy below 90 °C and are not suit-
able for operation in high temperature environments {water cooled
heat exchangers are usually needed); moreover, they produce a
cooling temperature as low as 5 °C. Therefore, they may not be

* Corresponding author. Tel.; +66 2 986 9009x2210; fax: +66 2 986 9009x2201,
E-mail addresses: satha@siit.tu.ac.th (5. Apharnratana), tsiiveerakul@yahoo.com
{T. Sriveerakul).

0196-8904/§ - see front marter @ 2010 Elsevier Ltd. All rights reserved.
doi:10.1016fj.enconman.2010.04.016

practical in applications that use solar energy as the thermat
source, or air cooled condensers, for example.

tn this paper an alternative heat-powered refrigeration cycle, a
combined Ronkine-vopour—compression refrigeration cycle, is pro-
posed. It is a combination of an Organic Rankine Cycle (ORC) and
a vapour-compression cycle. The two cycles are coupled together
with a device calted anexpander-compressor unit. The working fluid
used is R134a or R22. This cycle is analyzed theoreticatly using a
mathematical model, The generator temperature is 60-95 °C, the
condenser temperature is 30-50°C, and the evaporator tempera-
ture is —10 to 10 °C. The COP is found to be 0.1-0.6.

2. Organic Rankine Cycle

Organic Rankine Cycle is similar to a conventional steam tur-
bine cycle, except that the working fluid used is a low boiling point
organic fluid. Examptles of these fluids are halocarbon refrigerants
{R134a, R123, or R245fa). hydrocarbon refrigerants (butane or pro-
pane}. and new environmentalty refrigerants. Ammonia, which is
an inorganic refrigerant, is also used with this cycle. This cycle
can be operated efficiently on low-temperature heat sources such
as solar energy, geothermal energy.

One of the first Organic Rankine Cycle was developed in the
United States during 1880s by Frank Ofeldt [3]. The working fluid
used was naphtha. It was used to power a small boat. At that time,
the government required a license to run a steam engines but did
not require one when boited naphtha, Therefore, with the use of
this naphtha engine, the hoat could be run without the assistance
of an engineer.

This day Organic Rankine Cycles are a well-known and widely
used, mainly to generate electricity from low-temperature heat
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Nomenclature

A cross-sectional area (m?)

hy specific enthalpy for saturated liquid (k]/kg)

hy specific enthalpy for saturated vapour {k|/kg)

he difference in enthalpy between saturated liquid and sat-

urated vapour (k]fkg)

k specific heat ratio of the vapour refrigerant

L compressor or expander stroke (m)

N operating frequency of the expander-compressor-unit
(stroke/s)

P pressure [kPa)

4] heat rate (kw)

¥ swept volume of the compressor or the expander (m?)

1W, work transfer between states 1 and 2 (k])

W waork rate (kW)

v specific volume of the saturated liquid refrigerant (m?f
kg)

g specific volume of the saturated vapour refrigerant {m?f
kg)

Subscripts

1,2,3.... seeFigs. 1,2and5

COMp  COMPressor

con condenser

evap evaporator

expander expander

gen vapour-generator

comp-suction at the compressor during suction
comp-compression at the compressor during compression

sources, They are usually applied with biomass, geothermal en-
ergy, solar energy [4], or low grade waste heat. They are suitable
to be used as a bottoming cycle for other internal combustion en-
gines or steam turbine engines [5]. Commercial units with power
capacity 10-250 kW are available [6]. They are operated using
R134a or R145ca. The expanders used are radial flow turbine type
ol screw type. They can be applied when the differential tempera-
ture between the heat source and the surrounding is as low as
70 °C.

Several researchers applied Organic Rankine Cycle as a power
source for a vapour-compression refrigeration cycle, Barber [7] de-
signed and tested an Organic Rankine Cycle (using R113 as the
working fluid). 1t was used to drive a vapour-compression refriger-
ator (using R12 at the refrigerant). The experimental results showed
that the Rankine Cycle had an efficiency of 9% and the refrigerator
had a COP of 7.4, giving an overall COP of 0.5. Barber claimed that
his system would greatly outperform an absorption refrigeration
system when coupled with a concentrating solar collector,

Valves A, D, E, and H are opened
Valves B, C. F, and G are ¢losed

80°C, 2633 kPa

Jeong and Kang [8] proposed a system that consisted of a va-
pour-compression refrigeration cycle which was driven by an Or-
ganic Rankine Cycle. The two cycles used the same working fluid.
The fluids used were R123, R134a, and R245fa. The system was
proposed to replace large-scale absorption chillers which were
fired using LNG.

Unlike the systems found in the literature surveys, this paper
proposed a new organic system: a combined Rankine-vapour—
compression refrigeration cycle, This system uses a free-piston ex-
pander-compressor unit, in which the compressoer and expander
are integrated in the same unit. Thus, this system can be applied
for small-scale refrigeration system.

3. Combined Rankine-vapour-compression refrigeration cycle
Fig. 1 shows a schematic diagram of a combined Rankine-va-

pour-compression refrigeration cycle. The complete processes of
the cycle are shown in the temperature-entropy diagram, Fig. 2.

Cooling load
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The Organic Rankine Cycle and the vapour-compression refrig-
eration cycle are coupled together by an expander-campressar unit.
They also share the same condenser and working fluid.

The most commonly used and readily available refrigerants for
vapour-compression refrigeration cycles are R134a and R22. These
refrigerants are also used with Organic Rankine Cycle. In describing
the systemn operation, the following is assumed:

« R134a is used as the working fluid.

« The generator saturation temperature is at 80 °C.
» The condenser saturation temperature is at 40 °C.
» The evaporator saturation temperature is at 5 °C.

Starting at the generator, thermal energy at a temperature high-
er than 80 °C transfers to the refrigerant; a high-pressure and tem-
perature refrigerant vapour is evolved. This refrigerant saturated
vapour (1) is passed to the expander of the expander-compressor
uhit.

The expander-compressor unit {see also Fig. 3) consists of two
free-piston devices. The free-piston unit on the left side works as
an expander for the Rankine cycle, while the free-piston unit on
the right side works as a compressor for the refrigeration cycle.

At the expander unit, valves A and B are connected to the gen-
erator. Valves C and D are connected to the condenser. The valves
are controlled so that valves A and D are opened while valves B and
C are closed and vice versa.

As an example, if valve A is opened, this allows the high-pres-
sure refrigerant vapour from the generator to enter the left-cham-
ber of the expander. This causes the piston to move to the right,
Meanwhile, the refrigerant in the right-chamber of the expander
is released to the condenser {2, 3) via valve D.

At the compressor unit, its piston is connected and moves to-
gether with that of the expander. Valves E-H are check-valves.
When the piston is moved to the right, the vapour refrigerant in
the right-chamber of the compressor is compressed and pushed
out to the condenser {8) via valve H. Meanwhile in the left-cham-
ber of the compressor, the refrigerant vapour is drawn from the
evaporator (11) via valve E. This causes the refrigeration effect at
the evaporator.,

The vapour refrigerant exiting from the expander via valve D (3)
and from the compressor via check-valve H (8) are then liquefied in

High-pressure vapour
refrigerant from the refrigerant from the
generatpr cvaporater

| ||—

D

Lo - presure vapour

Valve A, 2 F, and F are opencd

Valve B.C,F, und are closed
To the condenser ¢ . I Gare cle

(a). The pistons are moved to the right.

High-pressure vapour
refrigerant from the
generaior

WL

Fo the condeiser

Low-presure vapour
refrigerant from the
evaporator

Valve A, D, B and  Fare clused
Valve B. C.Foand G are opened

{b). The pistons are moved to the lelt

Fig. 3. Operation of the expander-compressor unit {ECLI).

the condenser. Some of the condensate is pumped back to the gen-
erator (5) and the remainder {9) is expanded through the expan-
sion valve to the evaporator.

With appropriate opening and closing of valves A-D, the pistons
are pushed left and right alternately and the refrigeration effect is
produced continuously at the evaporator.



2560 S. Apharnratono, T. Sriveerakul / Energy Conversion ond Management 51 {2010) 2557-2564

In the expander’s exhaust (2, 3), the vapour refrigerant is at a
high temperature; therefore, it can be used to preheat the liquid
refrigerant prior to entering the generator (7). This reduces the en-
ergy input at the generator and an increase in the systemn COP
results.

4. Performance calculations
4.1. Expander-compressor pistons area ratio

The expander-compressor unit is the part that couples the Ran-
kine cycle and the refrigeration cycle together. The size of the pis-
tons is one of the critical parameters that affect the system
performance. During the operation, the expander’s piston pushes
and pulls the compressor’s piston. The force balance on the piston
set is used to determine the piston area ratio.

Supposing that valves A and D are opened while valves B and C
are closed, the high-pressure refrigerant vapour will push the ex-
pander's pisten to the right. Meanwhile the compressor's piston
will compress the refrigerant vapour from Peyap t0 Peon. Fig. 4 shows
a free-body diagram of the pistons. The piston acceleration is as-
sumed negligible. The force balance on the pistons (Fig. 4) results
in a pistons’ area ratio:

Piston with

v Piston with
ared of A e

©area of Aunnp

A

Purn -
E ~

Fig. 4. Free body diagram of the pistons set.

von

Piston with arcs of A g,

Acump _ Pgen — Pcon (])

Aexpander P(Uﬂ - PEVBP

4.2, Power input required by the compressor

When the compressor's piston is pushed from left to right, the
refrigerant in the right-chamber is compressed and pushed out
to the condenser while the refrigerant from the evaporator is
drawn into the left-chamber. Fig. 5 shows variation of the refriger-
ant's pressure in the left and right-chambers of the compressor.

In the compressor's right-chamber, when the piston is pushed
from left to right, the vapour refrigerant is compressed from Pe,p
to Peon. The compression process consists of two steps: 1-2 and
2-3, Between 1 and 2, the compression process is assumed to be
isentropic. Between 2 and 3, the compression process is assumed
to be of constant pressure,

For process 1-2, the vapour refrigerant initially at Py = Pey,p is
compressed isentropically to P; = Peop. During this process, no mass
is pushed out to the condenser. The relation between pressure and
volume for isentropic process is given as [9]:

P =Py (2)
The work input required to push the piston is:
Py - Py
Wy =2 (3)

For process {2 and 3), the vapour refrigerant is pushed out to the
condenser at a constant pressure of Pon (P2 = P3). The work input
required to push the piston is:

Wi =1 (V3 - ) (4)

It is also assumed that all the refrigerant vapour is compietely
pushed into the condenser (V3 — 0), then:

L
" >
From the evaporawor
% Right-chamber —(}—D
) _Ar To the condense
left-chamber - l To the condenser
r——————-
P
Pressure varialion in the right
chamber (compression)
P‘:\.m :
I i2 3
Y= Al 7=0
Pressure variation in the left
Piap chamber (suciion)
v =0 V= Aunnp'l-

Fig. 5. Pressure variation in the compressor.,
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W3 = —Ps -, (5)

The overall work input required during the compression pro-
cess is:

1Ws3 = Wy + W, (6)
Then:
v pit
Wmmp—cnmpression = ﬁ |:k . P2 . [P—j - Pij! (7)

For one stroke of the piston movement, the compressor will
compresses and draw the same amount of refrigerant vapour to
the condenser and from the evaporator respectively. The work re-
quired for the suction process is:

wmmp-suninn = Vevap 'Acomp L (8)

This power input required is also the same when the piston is
pushed from right to left. Therefore, for one stroke of the piston
movement, the work required is:

wcnmp = wcomp—compression + wcomp—suction (9)

For the case of the left-chamber, when the piston is moved from
left to right, the vapour refrigerant from the evaporator at Pe,,, is
also drawn into the left-chamber. If the compressor is operated
with N stroke in one second, the power input required is:

. . 1
Wromp =N. Acnmp L . [k Peon - [Pevap] - Pevapj! +N- ngap

1-k Peon
- Acomp - L (10}
ar
by Aams L Pevap |t
W(Ump*N‘ﬁ' k'ﬂun'{m} = Pevap (11)

4.3. Heat input ta the evaporator or cooling capacity

The mass flow rate of the low-pressure refrigerant vapour
drawn from the evaporator is:

. A L
Meyzp = N ome & (12)
Ug.uTw;p
This amount of refrigerant will produce a cooling effect of:
Qevap = mEVaP ' (hﬂ“‘ﬂ-vap - hf'“Tcnn) [13)

4.4. Heat inpur to the vapour-generator

It is assumed that when valves A and D are opened, the high-
pressure refrigerant vapour from the generator enters the left-
chamber of the expander via valve A, pushing the piston to the
right at a constant pressure of Pg.,, and compressing the refrigerant
vapour in the compressor from Pgy.p to Peoa. Since an amount of
useful work is produced, some vapour in the expander is con-
densed to liquid at Pg.n. Meanwhile, the vapour accumulated in
the right-chamber is discharged to the condenser via valve D.

The high-pressure refrigerant generated from the generator that
is required to push the engine's piston is:

N- Aexpander L + ‘wcump‘
PgaTpen

rhgen = (14)

Ugul’gm

The first term on the right hand side of Eq. (14) is the mass re-
quired to fill in the chamber formed by the piston and the cylinder
of the expander. The second term is the mass that performs the

work, pushing the compressor’s piston and is condensed to liquid.
It must be noted that an absolute value of W(nm,. is needed, since
that obtained from Eq. (11) is of negative value (work input). The
thermal energy input to the generator which is required to gener-
ate this amount of the high-pressure refrigerant vapour is:

Qgen - mgen . (hgangm - h?) (15)

In this analysis, it is assumed that T7 = T, + 10 °C. If no liquid-
preheater is equipped, T3 is then equal to Teon.

4.5. The power input to the generator's feed pump

The feed pump's process is assumed isentropic and the power
input is:

Woump = Mgen - UraTeey -~ (Pren — Peon) (16)

4.6. Performance parameters
Coefficient of performance for the combined cycle is;

Q
COpmmbined = $
Qgen + wpump

The COPegmbinea. Obtained from Eq. (17), presents the maximum
performance of the system at specified operating temperatures.

(17)

5. Assumptions used for performance calculations

« The system only exchanges heat with surroundings at the
vapour-generator, the condenser and the evaporator.

« Processes through the compressor and the feed pump are
isentropic.

« Pressure losses due to friction in heat exchangers and pipe-lines
are neglected.

« The liquid-preheater has a temperature difference (T, — T5) of
10°C.

« The compressor's piston has a cross-sectional area (Acomp) of
20 cm?® with a stroke (L) of 15 cm.

« At the compressor, there is no refrigerant left in the cylinder at
the end of the compression process.

» At the expander, there is no refrigerant left in the cylinder at the
end of the expansion process.

« Properties of R134a and R22 are obtained from ASHRAE [10].

= Based on the assumptions made, for specified operating tem-
peratures, the calculated results present the maximum perfor-
mance from the system,

6. Discussion of results

The combined cycle was analyzed based on the model and
assumptions described previously. The generator operating tem-
perature was between 60 and 100 °C, the condenser temperature
was between 30 and 50 °C, and the evaporator temperature was
between —10 and 10°C. The resulting calculations are provided
graphically in Figs. 6-12.

Fig. 6 shows variation of the area ratio with the operating tem-
peratures, In this analysis, the compressor’s piston was fixed, with
a cross-sectional area (Acomp) of 20 cm? and a stroke (L) of 15 cm.
The area ratio or the expander's cross-sectional area (Aexpander)
was determined from the force balance on the piston set. When
the saturation temperatures and pressures of the refrigerant var-
ied, this resulted in the change in the expander’s cross-sectional
area. From the definition of the area ratio (Eq. {1)), the higher the
area ratio, the smaller the expander's piston, and vice versa. The
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area ratio has been found to greatly affect the system COP, since it
is used to determine the amount of the refrigerant generated (also
the heat input) at the generator,

Fig. 7 shows the effect of the generator temperature on the gen-
erator heat input and the produced cooling effect. it can be seen
that the cocling effect produced at the evaporator is independent
from the change of the generator temperature, The reasons are that
the compressor piston cross-sectional area and the stroke were
fixed, and the refrigerant properties at the evaporator iniet (from
the condenser) and exit {to the compressor) were both unchanged.
From the figure it also shows that the system with R22 provides a
higher cooling capacity than that with R134a. This is a result of the
higher vapour density of R22 compared with R134a,

For the case of the generator heat input, the systerm with R22 re-
quires a larger amount of heat input than the systemn with R134a.
Because of the higher density of R22, even the R22 expander’s pis-
ton was smaller than that of the R134a system; a larger amount of
R22 vapour was required at the expander.

When a liquid-preheater is equipped, the heat input to the gen-
erator reduces dramatically. At the liquid-preheater, the liquid
refrigerant is preheated to a higher temperature before entering
the generator. The liquid-preheater utilizes the heat of hot vapour
releasing from the expander, which is normally wasted out at the
condenser,

From the figure, when the liquid-preheater is not equipped,
the heat input to the generator drops while the temperature in-
creases. This results from the reduction in the cross-sectional area
of the expander’s piston as can be seen in Fig. 6 (the pistons area
ratio increases with the generator temperature). The reduction of
the generator heat input is due to the fact that a lesser amount of
the refrigerant vapour is required at the expander; even the va-
pour density increases. However, when the generator tempera-
ture continues to increase, the generator heat input drops to a
minimum and then increases to a higher value. This is due to
the rapid increase of the vapour density (at high temperature
and pressure); even the area ratio continues to decrease. For
the case of the system equipped with a liquid-preheater, the gen-
erator heat input is only found to decrease while the temperature
increases.

Fig. 8 shows the effect of the generator temperature on the sys-
tem COP, It can be seen that the use of a liquid-preheater increases
the system COP significantly. The system with R22 also provides a
better COP than the system with R134a. This is due to the higher
cooling capacity of the R22 system (resulting from a higher density
of R22).

Fig. 9 shows the effect of the condenser temperature on the gen-
erator heat input and the produced cooling effect. It can be seen
that the cooling effect produced at the evaporator varies slightly
with the condenser pressure. This is due to the change of the refrig-
erant properties at the condenser exit (evaporator inlet). For the
case of the generator heat input, it increases with the condenser
pressure. This is because at a high condenser pressure, the system
requires a larger expander piston (lower area ratio). Therefore,
more refrigerant is required to push the expander’s piston at a high
condenser pressure. The variation of the system COP is shown in
Fig. 10.

Fig. 11 shows the effect of the evaporator temperature on the
generator heat input and the cooling effect. it can be seen that
the cooling effect produced at the evaporator increases with the
evaporator temperature. The rise in the evaporator pressure causes
the vapour density to increase. Therefore, more refrigerant is
drawn into the compressor. The higher vapour pressure, which oc-
curs when the evaporator temperature increases, also results in
less force required to push the compressor's piston. This then re-
sults in a smaller expander piston; less refrigerant is required at
the expander (less heat input is required at the generator). Overall,
the system COP increases when the evaporator temperature in-
creases, as shown in Fig. 12.

7. Conclusions

This paper proposes the concept of an alternative heat-powered
refrigeration cycle: a combined Rankine-vapour-compression
refrigeration cycle that combines an Organic Rankine Cycle and a
vapour-compression refrigeration cycle. These two systems are
combined together with a device called an expander-compressor
urit. The two systems use the same working fluid and they also
share the same condenser. In this study, R22 and R134a were used
as the working fluid. This combined eycle was analyzed theoreti-
cally using a mathematical model. The generator temperature
was between 60 and 90°C, the condenser temperature was he-
tween 30 and 50 °C, and the evaporator temperature was between
—-10and 10 °C. COP value between 0.1 and 0.6 was found.

The study shows that the area ratio between the expander's pis-
ton and the compressor's piston has a very strong effect on the sys-
tem COP. The system with R22 provided better COP than the
system with R134a for all ranges of operating temperatures. The
use of a liquid-preheater reduces the energy input at the generator
dramatically, and hence, increases the COP.
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The study also shows that this system can possibly be operated
in a wider range of operating temperatures compared with other
heat-powered refrigeration cycles (an absorption refrigeration cy-
cle and a jet refrigeration cycle). For example, it can be operated
with thermal energy as low as 60 °C, producing a cooling temper-
ature of 0 °C,

This system, therefore, is supposed as an alternative option in
the area of heat-powered refrigeration cycle. It is suitable for small
cooling capacity unit. For further development, an actual system
should be constructed and investigated.
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This paper describes an experimental investigation of a steam jet refrigeration, A 1 kW cooling capacity

experimentai refrigerator was constructed and tested, The system was tested with various operating

temperatures and various primary nozzles. The boiler saturation temperature ranked from 110 to

150 “C. The evaporator temperature was fixed at 7.5 °C. Eight primary nozzles with difference geometries

were used. Six nozzles have throat diameters ranked from 1.4 to 2.6 mm with exit Mach number of 4.0.

— Two remained nozzles have equal throat diameter of 1.4 mm but difference exit Mach number, 3.0 and
5.5. The experimental results show that the geometry of the primary nozzie has strong effects to the ejec-
tor performance and therefore the systemn COP.

@ 2011 Elsevier Inc. Aii rights reserved,

1. Introduction

In many industrial processes, an amount of heat is rejected to
the surroundings as waste. If this waste heat is converted to useful
refrigeration by using heat powered refrigeration systems, electric-
ity purchased from utility companies for conventional refrigeration
cycles can be reduced. The most widely used heat powered refrig-
eration cycles are absorption refrigeration cycles and jet refrigera-
tion cycles [1].

Both heat powered refrigeration cycles are powered by low-
grade thermal energy with some addition of a small amount of
electricity required to circulate their working fluids and to control
the systems. The absorption refrigeration system has a COP value
better than that of the jet refrigeration system. However, the jet
refrigeration is relatively simple to construct, operate, and contral,
It uses only single-component working fluid (refrigerant only).
Moreover, the jet refrigeration system is the only refrigeration sys-
tem that can use water, the most environmentally friendly and
cheapest refrigerant, as its single-component working fluid.

Performance of the steam jet refrigeration is strongly depen-
dent on the equipped ejector, In the past, a small-scale steam jet
was studied experimentaily. Effects of the operating temperatures
and effect of the primary nozzle position [2,3] were carried out.
Some researchers used CFD technique to explain the process in
side the ejector [4-7]. A small-scale steam jet refrigerator was also
applied to be used with solar enerey [3.9].

* Corresponding author. Tel.: +66 2 986 9009x2210; fax: +66 2 9862009x2201,
E-mail address: satha@siit.tu.ac.th (5. Aphornratana).
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[n this paper, effects of the primary nozzle's geometries {noz-
zle's area ratio) and the operating conditions on the ejector perfor-
mance were concerned, An experimental steam jet refrigerator was
built. The steam ejector was tested with eight difference primary
nozzles. The nozzle's throat diameters were 1.4, 1.7, 2.0, 2.3, 2.4
and 2.6 mm. The nozzle's area ratios were 7:1 (Mach number of
3), 20:1 (Mach number of 4), and 88:1 (Mach number of 5.5).
The operating conditions of the steam jet refrigerator were set so
that the system produced general refrigeration effect at normal
ambient condition by utilizing waste heat from industrial pro-
cesses, The boeiler temperatures were set between 110 and
150 °C. The evaporator temperatures were fixed at 7.5 °C. The tests
showed that the throat diameter and the area ratio of the primary
nozzle had strong effects to the ejector performance.

2, Background

A schematic view of a steam ejector is shown in Fig. 1. A high
pressure steam from the boiler, known as a primary fluid, expands
and accelerates through the primary nozzle. This results a super-
sonic jet stream of the primary fluid which creates a very low pres-
sure region at the nozzle exit plane and subsequently in the mixing
chamber. This low pressure region draws a secondary fluid from the
evaperator (where the refrigeration effect is produced) into the
mixing chamber. The primary fluid and the secondary fluid then
mix together in the mixing chamber. Due to a high momentum
of the primary fluid. the mixed stream is still in supersonic region,
By the end of the mixing chamber, a normal shock, series of oblique
shocks, or a pseudo shock are induced [4,5,10]. The shock causes a
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Nomenclature

cor coefficient of performance

NXP nozzie exit position {mm}

P absolute pressure {bar, mbar)

Rm entrainment ratio of an ejector

h specific enthalpy (kl/kg)

A cross-section area {m?)

M mach number

m mass flow rate (kg/min, kg/h)

k specific heat ratio (1.32 for water vapour)

Subscripts

cri conlition at critical condenser pressure
g-boiler saturated vapour at the boiler temperature
g-evap saturated vapour at the evaporator temperature
f-con saturated liquid at the condenser temperature
exit primary nozzle's exit plane

throat  primary nozzle's throat

major compression effect and a sudden drop in the flow speed
from supersonic to subsonic. A further compression of the flow is
achieved as it is brought to stagnation through a subsonic diffuser.
The ejector is discharged at a pressure {back pressure) equal to the
saturation pressure in the condenser. An important parameter
used to describe the performance of an ejector is an entrainment
ratio:

g = s flow of the secondary fluid
M = THass flow of the primary fluid

M

In a steam jet refrigeration cycle as shown in Fig. 2, an ejector
entrains a low pressure saturated water vapour from the evapora-
tor, where the refrigeration effect is produced, as the secondary
fluid, It uses a hot and high pressure saturated steam from the boi-
ler as the primary fluid. The ejector discharges its exhaust to the
condenser where the fluid is condensed to liquid by rejecting heat
out to the surrounding. Performance of a steam jet refrigeration cy-
cle is defined in term of the Coefficient of Performance for a steam
jet refrigeration;

COP = Rm . Tgevop ~ flycon 12)
hg-bo;ler - h!-con
Since the enthalpy change at the boiler is not much different

from the enthalpy change at the evaporator, it can be assumed
that:

COP = Rm (3)

Fig. 3 shows a typical performance of a steam ejector, When the
boiler and evaporator temperatures are fixed and the condenser
pressure is varied, the ejector's performance curve is divided into
three regions; choked flow, unchoked flow, and reversed flow [1].

For the choked flow region, the ejector is operated with the pres-
sure below the critical value (critical back pressure). The ejector
draws a fixed amount of the secondary fluid and results in a con-
stant value of the entrainment ratio. This is due to the flow is
choked in the mixing chamber. In this region, a transverse shock,
which creates a compression effect, is thought to appear in the
mixing chamber’s throat (constant-area duct section). The location
of the shock is dependent on the back pressure. When the baclk

. Mixing chamber
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Fig. 2. A schematic view of a steam jet refrigeration cycle.

pressure is increased, the shock will move upstream (toward the
primary nozzle) without disturbing the mixing process.

For the unchoked flow region, the ejector’s back pressure is high-
er than the critical value. The entrainment ratio drops remarkably
when the back pressure is increased. The choking of the flow is not
found in the mixing chamber. The transverse shock is believed to
move upstream into the mixing chamber (converging duct section)
and disturbs the mixing process between the primary fluid and the
secondary fluid.

For the reverse flow region. the ejector’s back pressure is higher
than the point called break down hack pressure, In this region the
mixed stream is reversed back to the secondary flow inlet, there-
fore the ejector finally malfunctions,

Fig. 4 shows the effect of operating pressures on the perfor-
martce of the steam ejector based on experimental data [1]. When

1 hrn:ll‘ Subsenmic diffuser

Primary fluid ,ﬂ*—r_{:‘:j’rﬂ

Primary nozzle

SRR el e

T Sceomlary fluid

Ejcctor's exbuust
thuck-peessare)

Fig. 1. Schematic view of a steam ejecter,
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Fig, 3. Effect of operating pressures on performance of a steam jet refrigerator
based on experimental data provided by Chunnanond and Apiornratana {t].

the primary fluid pressure (boiler saturation pressure) is de-
creased, critical mass flow rate through the primary nozzle is re-
duced. Since, the flow area of the mixing chamber is fixed, when
the critical mass flow is reduced, more secondary fluid is entrained,
Thus, increases of the entrainment ratio result. However, the ejec-
tor will operate with a lower critical back pressure. This is because
the momentum of the mixed flow is also reduced and results in a
tower critical back pressure,

When the secandary fluid pressure (evaporator saturation pres-
sure) is increased, both the critical back pressure and the entrain-
ment ratio will be increased. Since increasing of the secondary fluid
pressure which is the upstream pressure of the ejector, maore fluid
at a higher pressure is pushed into the ejector, Therefore, a higher
entrainment ratio and critical back pressure are resulted.

3. Experimental setup
3.1. Experimental steam fet refrigerator

The schematic diagram of an experimental steam jet refrigera-
tor is shown in Fig. 5. In this system, electric heaters were used
as simulated heat source and cooling load. The boiler and the evap-
arator shells were fabricated from 8inch and 31inch SUS 304
stainless steel pipes (schedule 40 s) with flanges welded at the
top and the bottom. The maximum heating capacity at the bailer
was 8 kW, The evaporator design was based on a spray and falling
film column, A 2 kW heater was used to simulate the cooling load.
The heaters’ power was controlled by means of electronic devices,
To ensure that only dry vapour entered the primary nozzle, the sat-
urated steam from the boiler was superheated by 1-2 °C by using a
500 W (adjustable power) superheater. The condenser was a shell
and coil type condenser and was cooled by water, Two mechanical
pumps were used. A pneumatic diaphragm pump was used as the
boiler feed pump. A magnetic coupled centrifugal pump was used
to promote evaporation rate at the evaporator.

18— N
0¥ R o Builer = 12000, Fyap = 7.5°C
A Buiter = 130°C, Fvap = 1040°C
R ® Boiter = 130°C, Evap = 7.5°C
S Boiler = 130°C
/
0.4 - EBvap = 7A°C
Sevuadury Pl Line
1.2
Buck Pressure tmbar)
b0 ! | 5l | |
30 40 30 o)

Fig. 4. Performance characteristics of a steam ejector based cn experimental data
provided by Chunnanond and Aphornrarana {1].

The ejector’'s primary and secondary fluid pressures were con-
trolled by presetting the saturation temperatures at the boiler
and at the evaporatar respectively. The ejector’s back pressure
was controlled by adjusting the cooling water flow rate at the
condenser.

The mass flow rates of the primary fluid and the secandary fluid
were abtained by measuring the decreased level of the water, at
the boiter and at the evaporator respectively, using attached sight
glasses during the certain time interval in steady operation.

Saturation pressures at the condenser (back pressure) and at the
evaporator (secondary fluid pressure) were measured by using
absolute pressure transducers (0-250 mbar-abs). All pressure
transducers with uncertainties of +0.25% were calibrated using a
double stage liquid ring vacuum pump and a standard mercury
barometer for absolute zero and atmospheric pressure values,
respectively.

Type K thermocouples with uncertainties of +0.5 °C were used
to detect the temperature change of the interested position as
shown in Fig. 5, The detected signal of each probe was connected
to the compensatar and signal amplifier circuit. All probes were
carefully calibrated using a precision glass thermometer.

Based on the passible error in the measurement of the de-
creased water level in the boiler and evaporator shells between
twa marks of their attached sight glasses during the certain time
interval in steady operation, the uncertainty in the calculated mass
flow rate of the primary fluid and the secondary fluid were +4.5%
and +6.5%, respectively. Therefare the calculated maximum uncer-
tainty of the entrainment ratio was +8%.

3.2, Experimental steam ejector

The experimental ejector consisted of 4 parts which were the
primary nozzle, the mixing chamber, the constant-area throat
and the subsonic diffuser, as shown in Fig. 6. Each of them was de-
signed to be easily fitted and interchanged with others. In this
study only one fixed geometry of mixing chamber was used. Eight
primary nozzles were used with their uncertainties in diameter of
+0.05 mm. Nozzles D1.4M4, D1.7M4, D2.0M4, D2.3M4, D2 4M4,
and D2,6M4 had difference throat diameters but the same area ra-
tio {exit area to throat area) of 20:1. All of these nozzles provided
equal exit Mach number of 4.0. The exit Mach number was calcu-
lated from the following equation [11]:

Aexir 1 2 k-1 2 ; ‘]]
Aroar Mexiz. {W] P 1 M} @

Nozzles D1.4M3, D1.4M4, and D1.4 M5.5 had the same throat
diameter of 1.4 mm but they had the nozzle's area ratios of 7;1,
20:1, and 88:1 respectively. They provided the exit Mach number
of 3.0, 4.0 and 5.5 respectively. During the tests, all nozzles were
placed at NXP value of 23 mm. The NXP (Nozzle Exit Position)
was defined as a distance between the primary nozzle exit plane
and the mixing chamber inlet planes [2]. The NXP was zero when
the nozzle exit plane was at the mixing chamber inlet plane, It had
positive value when the nozzle exit plane was inside the mixing
chamber and vice versa.

4. Experimental results
4.1. Critical mass flow rate of the primary fluid through the nozzles

In these tests, the evaporator was isolated from the system by
closing a ball valve connected between the ejector inlet and the
evaparator outlet. The critical mass flow rate of the primary fluid
was obtained by observing the decreasing rate of the liquid level
in the boiler via the attached sight glass over a finite time interval

art:cle in press as: N. Ruangtrakoon et al, Experimental stud:es of a steam jet refngeratwn cyc]e Effect of the primaryniozzle genrnet to
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Fig, 6. The experimental steam ejector.

when the boiler was operated at a preset saturation temperature. the nozzle area ratio (D1.4M3, D1.4M4, and D1.4M5.5). From the
The results are presented in Fig. 7. The results shows that for one figure, the critical mass flow rate through nozzles D1.4M3 and
particular nozzle, the primary fluid flow rate is increased when in- D1.4M5.5 are slightly difference from that of nozzle D1.4M4, this
crease the boiler saturation temperature and pressure. The flow may be resulted from an error during the manufacturing of the
rate is also increased when used a larger nozzle (D1.4M4, nozzles. In all cases, the critical mass flow rate is independent from
D1.7M4, D2.0M4). However, the flow rate is independent from the nozzle down stream pressure (condenser pressure).

steam jet refrigeration cycle; Effect of the' pn
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Fig. 7. Critical mass flow rate through the primary nozzles,

4.2. Effect of the primary fluid pressure

In these tests, nozzle D1,7M4 was used. The throat diameter
was 1.7 mm and the calculated exit Mach number was 4.0. The boi-
ler saturation temperature ranged from 130, 140, and 150 °C. The
evaporator temperature was fixed at 7.5 °C.

Fig. 8 shows effects of the primary fluid pressure ( boiler satura-
tion pressure} to the secondary fluid minimum pressure {ejector's
suction pressure). During the tests, the evaporator was isolated
from the system by closing the valve connected between the ejec-
tor inlet and the evaporator outlet. The ejector suction pressure
was measured. This pressure represents the minimum cooling
temperature (saturation temperature in the evaporator) for speci-
fied boiler and condenser temperature. For this test, no secondary
fluid was entrained, therefore the entrainment ratio was zero.

Referring to Fig. 8, for the boiler saturation temperature of
150 °C and at low condenser pressure, the suction pressure is fairly
constant at minimum value of 2.7-3.2 mbar aver the region of the
condenser pressure lower than 44 mbar. When the condenser pres-
sure is increased higher than 44 mbar, the suction pressure is
started increasing with the increase of the condenser pressure, At
the condenser pressure of 60 mbar, the suction pressure is 10 mbar
which correspandence to the saturation temperature of 7.5 °C. This
condenser pressure is the breakdown pressure as shown in Fig. 9,
When the condenser pressure is further increased, the suction
pressure increases almost directly with the condenser pressure.
As can be seen from Fig. 8 that the line is almost paralle| to the line
of Pevap = Peon

When the boiler saturation temperature is decreased to 140 and
130°C, similar performance curves are obtained. It can be seen
that, the minimum suction pressures at low condenser pressure
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Fig. 9. Variation of the entrainment ratio with the primary fluid pressures.

region are independent from the change of the hoiler pressure, This
is due to the fact that, the primary fluid leaves the nozzle with the
same Mach number of 4 for all cases., The exit Mach number is
dependent on the nozzle's area ratio. All the nozzles have equal
area ratio of 20:1. Therefore the static pressure at the nozzle exit
plane is almost the same for all cases,

The different between the three curves in Fig. 8 are, the mini-
mum suction pressure of the curve with low boiler temperature
start increasing {from the minimum value) at a lower condenser
pressure than that of the one with a higher boiler pressure, This
is resulted from the difference in the critical mass flow rate
through the primary nozzle, the higher the boiler pressure, the
higher the critical mass flow rate, and vice versa, Even the velacity
of the flow leaving the primary nozzle are approximately the same
for all cases, the momentum (or kinetic energy) of the flow, which
is increased with the mass flow rate and the flow velocity, are
difference.

Fig. 9 shows effects of the primary fluid pressure to the entrain-
ment ratio. For a fixed boiler temperature, the condenser satura-
tion pressure was adjusted so that the ejector was operated
under choked flow and unchoked flow regions. The condenser
pressure was adjusted until the breakdown point was attended.

When the primary fluid mass flow is increased due to the in-
crease of the boiler pressure, in the choked flow region, the ejectar
entrained less amount of the secondary fluid. Since the flow area in
the mixing chamber is fixed when the primary fluid mass flow in-
creases, the flow area (the annulus area farmed between the mix-
ing chamber’s wall and the primary fluid jet's core) for the
secondary fluid is reduced. The entrainment ratio decreases when
the boiler pressure is increased. However, the momentum of the
mixed stream in the mixing chamber is increased due to the large
amount of the primary fluid. The ejector can be operated with a
higher critical condenser pressure.

4.3. Effect of the primary nozzle’s throat diameter

In these tests, the boiler and the evaporator saturation temper-
atures was fixed at 150 °C and 7.5 °C respectively. Nozzle D1.4M4,
D1.7M4, and D2.0M4 were used. All the nozzles had an equal area
ratio of 20:1 that produced equal exit Mach number of 4.0. Fig. 10
shows effects of the primary nozzle's throat diameter with fixed
boiler pressure ta the secondary fluid minimum pressure (ejectar's
suction pressure), and to the entrainment ratio in Fig. 11.

It can be seen that Fig. 10 is similar to Fig. 8, and Fig. 11 is sim-
ilar to Fig. 9. This implies that, using a primary nozzle with large
diameter provide the same effect to the ejector performance as
caused when operating the ejector with a high boiler pressure.
For all nozzles with equal exit Mach numbers of 4.0, similar mini-

mum suction pressures are obtained. The nozzle with larger throat

igeration cycle: Effect of the primary nozzle geometries to
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Fig. 11, variation of the entrainment ratio with the nozzle's throat diameter.

diameter provide higher primary fluid mass flow rate than that for
the smaller one; therefore, less flow area in the mixing chamber for
the secondary fluid is entrained and a lower entrainment ratio re-
sults. However, at the nozzle exit, larger momentum and kinetic
energy of the primary fluid is produced. This resuits in a higher
critical condenser pressure which is similar to the case of an in-
crease in the boiler saturation temperature,

4.4, Effect of the nozzie’s exit Mach number

In these tests, nozzles D1.4M3, D1.4M4, and D1.4M5.5 were
used with boiler saturation temperature of 150 °C and evaporator
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Fig. 13. Variation of the entrainment ratio with the nozzle's exit Mach number.

temperature of 7.5 °C. The three nozzles had equal throat diameter
of 1.4 mm. They provided the same critical mass flow rate but dif-
ference exit Mach number. Fig. 12 shows effects of the nozzle’s exit
Mach number to the minimum secondary fluid pressure (ejector’s
suction pressure) and to the entrainment ratio in Fig. 13.

From Fig. 12, it can be seen that, the minimum secondary fluid
pressure is decreased when the Mach number of the primary fluid
is increased, 5.5 mbar for D1.4M3, 3.2 mbar for D1.4M4, and
2.2 mbar for D1.4M5.5. For the case of the nozzle D1.4M5.5, the
minimum secondary fluid pressure is fairly constant at 2.2 mbar
until the condenser pressure reaches 44 mbar. The suction pres-
sure raises sharper than that found in the cases of D1.4M3 and
D1.4M4.

From Fig. 13, the entrainment ratio in choke flow region is inde-
pendent from the change of the Mach number at the nozzle exit.
All nozzles entrain the same amount of the secondary fluid. How-
ever, the critical condenser pressure is increased with the Mach
number. For nozzle D1.4M3, the critical condenser pressure is
38 mbar. For D1.4M4, the critical condenser pressure is 44 mbar.
For D1.4M5.5, the critical condenser pressure is 54 mbar. This is
due to the momentum of the primary fluid, the higher the Mach
number, the higher the momentum of the flow. This imiplies that,
the Mach number of the primary fluid should be as high as possi-
ble. However, maximum nozzle's exit Mach number is limited by
the diameter of the nozzle exit and the boiler pressure as shown
in Table 1.

From Table 1, the nozzle's area ratios were obtained from Eq, (4)
and the expansion ratios were calculated from [8]

k.
. _ )
1 (57
The nozzle exit pressures were obtained from Fig. 12 except for
the case of Mach number of 6.0 which was obtained by extrapola-
tion of the experimental data. For the case of Mach number of 6.0,
the nozzle exit diameter is 16 mm which is as large as the mixing
chamber throat diameter (19 mm), This will block the secondary
flow at the mixing chamber inlet, Therefore, in practice, the pri-
mary nozzle should be design so that the exit Mach number is be-
tween 4.0 and 5.5. Nozzle with exit Mach number greater than 5.5
will has a large exit area which will obstruct the secondary flow at
the inlet of mixing chamber-.

4.5. Effect of the primary nozzle's throat diameter with fixed critical
mass flow rate

In these tests, the evaporator temperature was fixed at 7.5 °C,
Nozzles D1.4M4, D1.7M4, D2.0M4, D2.3M4, D2.4M4, and D2.6M4
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Table 1
Data for nozzles with difference exit Mach number.

Mach number Expansion ratio Area ratio Nozzle exit pressure {mbar) Minimum boiler pressure (bar) Nozzle exit diameter (mm)
3.0 39 7.2 5.5 0.21 (61.1 °C) 38
4.0 184 20.8 32 0.59(85.5°C) 6.4
5.5 1386 883 22 3,05 (134.1°C) 13.2
6.0 2514 137.3 1.9 478 (1402 °C) 16.4
Table 2 08— 55
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Fig. 15. Variation of the entrainment ratio when using various nozzles but fix the
critical mass flow rate and the exit Mach number,

were used, These npozzles had different throat diameter but has the
same area ratio. They produced equal exit Mach number of 4.0.
During the tests, the boiler saturation temperature was adjusted
so that the critical mass flow rate was approximately fixed at
4.6 + 0.05 kg/h as shown in Table 2.

Since the Mach number and mass flow rate of the primary fluid
leaving each nozzle was fixed, momentum of the primary flow was
the same for all nozzles. One would expect that, both the entrain-
ment ratio and the critica] condenser pressure for all nozzles would

Fig. 16, Variation of the entrainment ratio and the crncal hacle pressure when
using various nozzles but fix the critical mass flow rate and the exit Mach number.

be very similar. However, from the tests it was not. Fig. 14 shows
the variation of the minimum secondary fluid pressure and
Fig. 15 shows the variation of the entrainment ratio.

From Fig. 14, it can be seen that, when a larger nozzle is used,
the minimum suction pressure decreases and is fairly constant to
a higher condenser pressure {this is similar to the case of using a
nozzle with a higher Mach number). From this, it can be expected
that using a large nozzle with high boiler pressure wili be more
superior compared with using a small nozzle with high boiler
pressure.

From Fig, 15, when a large nozzle with low boiler pressure is
used, the entrainment ratip is slightly decreased but a higher crit-
ical condenser pressure is obtained. Results from Fig. 15 may be
presented as shown in Fig. 16. It can be seen that the entrainment
ratio is slightly decreased when a larger nozzle is used. An interest-
ing point is that, when the nozzle is changed from D1.4M4 to
D2.0M4, the critical condenser pressure is slightly and linearly in-
creased. When nozzle D2.3M4 is used, the critical condenser pres-
sure raises rapidly to the maximum value. When nozzles D2.4M4
and D2.6M4 are used, the critical condenser pressures are dropped.

The slightly reduction in the entrainment ratip may be resulted
from a larger core of the primary fluid which results in a smaller
effective flow area for the secondary fluid. The raise in the critical
condenser pressure may be resulted from a lower secondary fluid
entrained. However, the entrainment ratio is onty slightly de-
creased, If this is the main reason, the critical condenser pressure
should not be significantly increased. Another reason may be
caused by the mixing process between the primary and secondary
fluids in the mixing chamber. In order to explain this phenomenon,
a further study using CFD technique may be used.

5. Conclusions

In this study, the experimental steam jet refrigerator was tested
with 8 different primary nozzle's geometries. In all tests, the evap-
orator saturation temperature was fixed at 7.5 °C. The boiler satu-
ration temperature was between 110°C and 150 °C. The primary
nozzles had their throat diameters between 1.4 mm and 2.6 mm.
The nozzles produced the exit Mach number from 4.0 to 5.5.

Piease cite'this article in press as: N, Ruangtrakoon et al,, Experimental studies of a steam jet refrige
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Table A1
Experimental results.

N. Ruangtrakaan et ol./ Experimental Thermal and Fluid Science xxx (2017) xxx-xxx

Nozzle Thatter (°C) Mprimary (Kg/h} Msorondary (KE/N) Rm Peon.cn {Mbar)
D1.7M4 130 3,505 1.478 0422 35.0
140 4,625 1.327 0.287 450
150 6.006 1131 0.188 585
D1.4M4 150 4568 1.317 0.288 44.0
D1.7M4 6.006 1131 0.188 585
D2.0M4 7,791 0.792 0.102 79.0
D1.4M3 150 4.289 1.208 0.282 38.0
D1.4M4 4568 1317 0.288 440
D1.4M5.5 4.787 1338 0.280 54.0
D1.4M4 150 4,568 1317 0.288 440
D1.7M4 140 4,625 1327 0.287 44.5
D2.0M4 130 4537 1.298 0.286 450
D2.3M4 120 4530 1.237 0.273 51.0
D2.4M4 1136 4558 1.218 0.267 43.5
D2.6M4 1112 4.608 1.209 0.262 438.5

All results were abtained at an evaporator saturatian temperature of 7.5 °C.

» For one particular primary nozzle, operated at a fixed evapora-
tor saturation temperature, the critical mass flow rate through
the nozzle is increased with the boiler pressure. But the nozzle
exit Mach number is remained unchanged. The lower entrain-
ment ratio ts produced when the boiler saturation temperature
is increased. However, the ejector can be operated at a higher
critical condenser pressure.

+ When several nozzles with different throat diameters are used
under a fixed boiler and evaporator saturation temperature, dif-
ferent amounts of critical mass flow rate through these nozzles
are produced. However, if the nozzles have the same area ratip,
the exit’s Mach numbers would be equal. The entrainment ratio
decreases when a larger throat nozzle is used but the ejector
can be operated with a higher condenser pressure, and vice
versa.
When several nozzles with an equal throat diameter are used
under a fixed boiler and evaporator saturation temperature,
the same amount of critical mass flow rate is produced. How-
ever, if their area ratio is different, these nozzles provide differ-
ent exit Mach numbers. The entrainment ratio is essentially
constant and independent from the area ratio of the primary
nozzles. The nozzle with large area ratio that produces a high
Mach number, is able to be operated with a higher critical con-
denser pressure, However, in practice, the exit Mach number
may be limited at 4.0-5.5. This is due to the size of the nozzle
exit and the required minimum boiler pressure,
When several nozzles with different throat diameter but the
same area ratio are used, these npzzles produce the same exit
Mach number. If the boiler saturation temperature is allowed
to varied sp that the critical mass flow rate through each nozzle
are constant. Therefore the nozzle with larger throat diameter is
operated at a lower hoiler saturation temperature, and vice
versa. The nozzle with larger throat diameter (with lower boiler
saturation temperature), will entrain slightly less amount of the
secondary fluid from the evaporator. However it can he oper-
ated at a higher condenser pressure.

From this study, it can be concluded that, geometries of the pri-
mary nozzle have strong effects to the ejector performance and
therefore the system COP. A further study using CFD technique

should be carried out in prder to explain the process inside the
ejector.
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A study of flow in an ejector equipped with variable throat area

of the primary nozzle using CFD simulation

Nat Suvarnakuta” Kraiwut Uthaikorn' Thanarath Sriveerakul * and Satha Aphornratana ™

Abstract

The aim of this research is to study a flow in an ejector equipped with variable throat area of the
primary nozzle. Using a CFD technique, flow phenomena, mixing structure and perfoermance of the gjector
were analyzed and explained, In this study, a 2D-axisymetric modei was used. Realizable k-epsilon model
was applied for a turbulence medel. R141b was selected as a refrigerant fluid. Instead of changing the size of
ihe tnroat diameter, variation of throat area ¢F the primary nozzle was achieved by changing a wedge's
position. The wedge's pasition or the needle tip position (NTPY is defined as a distance between a nlane of
needle's tip and a plane of the primary nozzle's throat. Results show that altering the needle tip positiors (NTP)
affects the ejector’s parformance. For example, changing the NTP to 0, 5 and 10 mm., urder the primary fluid
saturated temperature of 100 “C and the secondary fluid saturated temperature of 5 “C. the entrainment ratio
was stibjected to increased from 0.24 to 0.30, and 0.52, respectively. While its critical back pressure (CBP)
trand to reduce from 1201 kPa to 112.2 kPa and 84.%2 kPa. The results of this study were verified with @ CFD
simulation of a typical R141b gjector (Sriveerakui, 2008). A CFD simulation at & mm. of NTP presents a closest
CFD result to the typical gjector (the ejecter without a wedge),

Keywords: Ejector, CFD R14%b
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