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Abstract

This work studied adsorption of reactive black
5 dye on an activated carbon prepared from
sugarcane bagasse which was chemically activated
by potassium hydroxide. Experiment was divided
into 4 parts according to adsorption affecting factor
including contact time, initial solution pH, initial dye
concentration and temperature. Firstly, the effect of
contact time on the dye uptake was studied. It was
found that the adsorption rate was rapid in first 10
minute and then attained equilibrium at 10 hour.
Kinetic data follows the pseudo-second-order model.
Secondly, the effect of initial solution pH was
investigated. It was observed that the dye uptake
slightly increased with the pH. Thirdly, the effect of

initial dye concentration was performed. The
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Abstract— The removal of methyl oragne from aqeous solution onto chitosan-coated-montmorillonite (CTS/MMT) was
studied in this work by using fixed bed adsorption column. Experiments were carried out as a function of inlet methyl
orange concentration (Cy: 50-200 mg/L), liquid flow rate (Q: 3.60 - 9.25 mL/min) and mixed sand-clay bed height (H:
15-25cm). The breakthrough characteristics of the adsorption were investigated. The breakthrough point appears faster
with increasing liquid flow rate and inlet methyl orange concentration, but more slowly with increasing the bed height.
It was found that the highest bed capacity of 7.34 mg/g was obtained at the condition: 200 mg/L inlet methyl orange
concentration, 15 cm bed height and 3.60 mL/min flow rate. The adsorption data were fitted to three well-established
fixed-bed adsorption models namely, Adam’s-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the
Thomas and Yoon-Nelson models with coefficients of correlation R?>0.9415. The adsorption test shows that CTS/MMT

can be used as effective adsorbent for adsorption of the mtheyl orange using fixed-bed adsorption column.

Keywords— Methyl orange, chitosan-coated-montmorillonite, adsorption, fixed-beds.

1. INTRODUCTION

Presently, textile industries are much larger scale-up to
increase the amount of products. An azo dye such as
methyl organe, which contains at least one azo bond (-
N=N-) bearing aromatic rings, is the most common dye
used due to their advantages such as bright colors,
excellent color fastness and ease of applications [1].
Many azo dyes are toxic to some organisms and may
cause direct destruction of creatures in water. They are
hardly biodegradable in the natural stream codition. Azo
dyes are highly soluble in water, their removal from
effluent is difficult by conventional physicochemical and
bilological treatment methods [2]. The removal of
methyl orange from wastewater by adsorption technique
using low-cost meterial could be an alternative method to
handle this problem.

Montmorillonite clay (MMT) is a natural matter, low-
cost and high spport in Thailand. It is a larmina structure
with 2:1 silica. The clay inner layer composes of an
alumina (Al,O;) complex octahedral sheet, which is
sanwhiched by two silica (SiOy) tetrahedral sheets. The
substitution of AI** for Si** in the tetrahedral layer and
Mg?* or Fe** for AI’* in the octahedral layer results in a
net negtive charge. In nature, the permanant negative
charge on clay surface and lamella interlayer is
compensated naturally by accomulation of cation Na®, or
Ca® on the layer surfaces. The MMT is water swellable
which is due to the proton can be loaded in the interlayer
resulting in larger basal spacing. The adsorption capacity
of cations dye onto the clay is high due to electrostatic
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535-3333; e-mail: Jaggrit@hotmail.com).

S. Sakaew is with Department of Chemical Engineering, Ubon
Ratchathani University, Warin champrap, Ubon Ratchathani, Thailnad,

interaction between the negative layer charge and
cationic dye molecules, for example, natural MMT can
adsorb high amount of cationic dye such as methylene
blue with the monolayer adsorption capacity of 322.6 mg
dye/g clay [3]. Although high amount of cationic dye
loaded on MMT was observed, anionic dye uptake on the
MMT is very small because of electrostatic replusion.
The use of modified MMT for anionic dyes has been
widely considered in recent years by a number of
researches [4], [5]. The coated catioic surfacant on the
clay surface colud affect the clay structure which
echances adsorption capacity to methyl organe [5]. The
MMT activated by hydrochloric acid promotes the
uptake of methyl orange on the modified clay as
compared to the untreated MMT [6]. It can be mentioned
that the modified clays display higher dye adsorption
capacity than that of the original clay.

Chitosan (CTS) is the N-deacetylated derivative of
chitin and the second most plentiful natural biopolymer.
As a well-known sorbent, CTS is widely used for the
removal of heavy, transition metals and dyes because the
biopolymer chain of CTS contains amine group (-NH,)
and hydroxyl group (-OH) which can bind with cationic
and anionic molecules [7]. Therefore, the CTS is a good
adsorbent for methyl orange adsorption. On the other
hand, CTS has some limitation that is the weak
mechanical property and low specific gravity so it swells
and floats when it is dissolved in water. To improve this
limitation, it can be immobilized on the MMT surface to
form a composite such as CTS/MMT. Therefore, the
objective of this research is to study adsorption of
methyl oragne onto CTS/MMT in fixed-bed column. The
important design parameters such as inlet concentration
of methyl orange solution, flow rate of fluid and column
bed height were investigated. The breakthrough curves
for the adsorption of methyl orange were analyzed using
Adam's-Bohart, Thomas and Yoon-Nelson models.
Further, modeling on the adsorption dynamics of the
fixed bed was presented. Finally, the correlation between
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the model and the experimental data were compared.

2. RESEARCH METHODOLOGY
2.1 Materials

The methyl orange (C4H,,N;Na0;S) obtained from Asia
Pacific Specialty Chemicals Co. Ltd., is a monovalent
anionic dye with molecular weight of 327.33 g/mol. The
dye stock solution was prepared by dissolving accurately
weight methyl orange in distilled water to meet 1 g/L of
the dye concentration. The experimental solutions were
obtained by dilution of the dye stock solution in accurate
proportions to needed inlet concentrations. The chemical
structure of methyl orange is shown in Fig.l. CTS
(C12H4N,0g) obtained from Aldrih Chemistry has
molecular weight of 340.33 g/mol.

0O
N— >—§/¢ °
\ /
/N N/ \OH

Fig.1. Molecular Structure of the Methyl Orange [S]

The MMT used was supplied by Thai Nippon
Chemical Industrial Co. Ltd., Thialand. The chemical
composition of MMT in weight percent is 56-60% of
Si0,, 16-18% of Al,0;, 5-7% of Fe,03, 2.4-3% of Na,O,
1.5-2% of MgO, 1.9-2.1% of Ca0, 0.3-0.5% of K,0 and
1.2-1.5% TiO,. The cation exchange capacity (CEC),
data from the supplier, is 80 meq per 100 grams of
MMT. The chemicals and clay were used without furthur
purification.

2.2 Preparation of chitosan-coated-montmorillonite

An amount of | g of MMT dissolved in 100 mL distilled
water and 100 mL of 2 g/L CTS solution were added into
a batch reactor. The mixing was done by stirring at
constant speed 200 rpm for 1 h at room temperature
(25°C). The pH of the suspension was adjusted to 7.0-7.5
by adding 0.1M NaOH and/or 0.IM HCI solutions and
left it 30 min for gel formation. The formed composite
was filtrated and washed with distilled water and then
dried at 40°C for 12 h. The dried clay was ground and
sieved to 200 mesh sieve to obtain particle size in range
of 300-600 um. The CTS adsorbed onto MMT was
confirmed by using CHNS-analyzer.

2.3 Column investigation

The CTS/MMT clay was mixed with quart sand at 2% by
weight of adsorbent and then it was loaded into the glass
column (1.2 cm inner diameter and 40 cm in height).
Glass wool was inserted in the column as support. The
column was loaded with different initial methyl orange
concentrations, different flow rates and different mixed
clay-sand bed heights as listed in Table 1. The effluent
samples were continuously collected at the bottom of the
column every 5 min in order to obtain breakthrough
curve and the collected time was noted to determine the
mean liquid flow rate. The dye concentration was
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analyzed by using UV-Vis-spectrophotometer at
maximum absorbance wave length of 536 nm. The
experiments were carried out at temperature of 2521°C
without pH adjustment.

2.4 Analysis of fixed-bed column data

The time for breakthrough appearance and the shape of
the breakthrough curve are very important characteristic
for determining the operation and the dynamic response
of an adsorption fixed-bed column. The breakthrough
curve shows the behavior of dye removed from the
aqueous solution in a fixed-bed column and is usually in
term of adsorbed methyl orange concentration (C,q), the
initial methyl orange concentration (Cy), outlet methyl
orange concentration (C,) or normalized concentration
defined as the ratio of outlet methy! orange concentration
to inlet methyl orange concentration (C/Cy) as a function
of time or volume of effluent for a given bed height.
Effluent volume can be calculated by multiplying total
flow rate (Q: mL/min) and total flow time (tio: Min).

The total adsorbed methyl orange quantity (maximum
column capacity) or g, Was determined by integrating
area under curve of the plot between C,4 (mg/L) versus t
(min) multiplied by mean flow rate velocity (mL/min).
The area under the breakthrough curve (A) obtained by
integrating the adsorbed concentration (C,: mg/L)
versus t (min) plot can be used to find the total adsorbed
methyl orange quantity (maximum column capacity).
Total adsorbed methyl orange quantity g, (mg) in the
column for a given feed concentration and flow rate is
calculated as:

1= g1y

Q
=—=— |C,di D
qmiai l OOO ’!0 ad

Equilibrium uptake q. (mg/g) or maximum capacity of
the column is determined by division of the total amount
of adsorbed (gu) per gram of adsorbent (w) at the end
of total flow time.

3. RESULTS AND DISCUSSION

3.1 Breakthrough characteristics
capacities

and adsorption

A plot between the effluent volumes against the time was
constructed. It was found that the plot was linear line
with correlation coefficients of R? > 0.9999 showing that
no blocking of mixed clay-sand in the column. The
liquid mean flow rate velocities (Q) are shown in Table
L.

Fig. 2 shows the effect of a variation of the inlet
methyl orange concentration of 50 to 200 mg/L on the
adsorption characteristic was carried out using a fixed
bed height and a solution flow rate. The normalized
concentration (C/C,) initially increases with time t and
then remains constant. Moreover, it was observed that
the slope of breakthrough curve obtained at 50 mg/L
initial dye concentration was steeper than those 100
mg/L and 200 mg/L, respectively. At lower inlet dye
concentrations, breakthrough curves were dispersed and
the breakthrough points were reached slower. This can
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be described that a lower concentration gradient causes a
slower methyl orange transport with a small diffusion
coefficient or mass transfer coefficient. The larger inlet
concentration provides steeper breakthrough curve and
faster breakthrough point which is a result from the
greater concentration gradient promoting the saturation
rate. As the inlet methyl orange concentration increases,
the methyl orange loading rate increases, so does driving
force or mass transfer increase, which in a decrease in
the adsorption zone length [8].

Table 1. Column Data Parameters obtained at Different
Intet Methyl Orange Concentrations, Bed heights and Flow
Rates

Co H Q ty Vi | Qoo Je
(mg/ | (cm) | (mL/m| (min) | (mL) | (mg) | (mg/g)
L) in)
50 | 15 | 3.60 | 1.78 379 | 224 | 373
100 15 | 360 | 272 | 9.29 | 326 | 544
200 | 15 | 3.60 | 2.10 | 7.59 | 4.41 | 7.34
100 | 20 | 3.60 | 228 | 821 | 378 | 472
100 | 25 | 360 | 297 | 821 | 421 | 421
100 ] 15 | 7.20 | 1.93 | 107 | 267 | 4.45
100 | 15 | 920 | 1.43 [13.19] 1.87 | 3.12
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Fig.2. Breakthrough Curves for Methyl Orange Adsorption
at Different Initial Concentration (15cm Bed Height and 3.6
mL/min).

Fig. 3 shows the breakthrough curve of methyl orange
adsorption on the mixed clay-sand bed with variation of
three flow rates such as 3.60, 7.20 and 9.20 mL/min. It
was observed that breakthrough generally occurred faster
with higher flow rate. Breakthrough time reaching
saturation was increased significantly with a decreased in
the flow rate. At low flow rate, the inlet methyl orange
has more time to contact with bed resulting in higher
capacity adsorption of methy! orange in column. It can
be described that at higher flow rate the rate of mass
transfer gets increase with flow rate leading to faster
saturation. At a higher flow rate, the adsorption capacity
was lower due to insufficient residence time of the solute
in the column and diffusion of solute into the pores of the

adsorbent, and therefore, the solute left the column
before equilibrium reached.
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Fig.3. Breakthrough Curves for Methyl Orange Adsorption
at Different Flow Rates (100 mg/L Initial Methyl Orange
Concentration and 15¢cm Bed Height).

Fig. 4 shows the breakthrough curve of methyl orange
adsorption on the mixed clay-sand bed with different bed
heights of 15, 20 and 25 cm (0.6g, 0.8g and 1.0g). The
breakthrough increases with increasing the bed height.
As the bed height increases, methyl orange had more
time to contact with the bed resulting in higher
adsorption capacity of methyl orange in the column. The
slope of breakthrough curve decreased with increasing
bed height, which results in a broadened mass transfer
zone. High adsorption capacity was observed at the
highest bed height due to an increase in the surface area
of adsorbent, which provided more binding sites for the
adsorption.
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Fig.4. Breakthrough Curves for Methyl Orange Adsorption
at Different Bed Height (100 mg/L Initial Methyl Orange
Concentration and 3.6 mL/min).
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Table 1 shows not only the liquid mean flow rate
velocities but also the breakthrough characteristics,
adsorption capacity and exhausted time, of methyl
orange in the mixed CTS/MMT-sand clay beds at
different inlet methyl orange concentration, different
flow rate and different bed length. The breakthrough
point (the position at C/Cy = 0.05) appears faster with
increasing liquid flow rate and initial methyl orange
concentration, but more slowly with increasing the bed
height. The highest of breakthrough time (t,) was 2.97
min which obtained at condition: 100 mg/L inlet methyl
orange concentration, 25 cm bed height and 3.60 mL/min
flow rate. The highest breakthrough volume (V,) was
13.19 mL which obtained at condition: 100 mg/L inlet
methyl orange concentration, 15 cm bed height and flow
rate of 9.20 mL/min. The highest bed capacity (q.) was
7.34 mg/g obtained at the condition: 200 mg/L. methyl
orange concentration, 15 cm bed height and flow rate of
3.60 mL/min.

3.2 Modelling of Brakthrough curves

It is necessary to fit the adsorption data using established
models and subsequently determine noticeable
parameters associated with these models to determine
their influence for optimization of the fixed-bed
adsorption process.

3.2.1The Adam’s-Bohart model

Adam’s-Bohart model [9] established the fundamental
equations describing the relationship between C/Cy and t
in a continuous system. The Adam’s-Bohart model was
applied to experimental data for the description of the
initial part of the breakthrough curve. The expression is
following:

C Z
ln[F‘)J =k, ,Cf - kABNO(;:J @

where Cg and C, (mg/L) are the inlet and effluent methyl
orange concentration, kg (L/mg.min) is the Kkinetic
constant, F(cm/min) is the linear velocity calculated by
dividing the flow rate by the column cross section area,
Z(cm) is the bed depth of column and Ny (mg/L) is the
saturation concentration. A linear plot of In(C/Cy)
against time (t) was determined values of kap and Ny
from the intercept and slope of the plot (Figure not
shown).

Table 2. Adam’s — Bohart Parameters at Different
Conditions Using Linear Regression Analysis

Co H Q Kagx10® No R’
(mg/ | (cm) (mL/ (L/mg (mg/L)

L) min) min)

50 15 3.60 9.048 94410 [ 0.9128
100 15 3.60 5.462 182.907 | 0.9049
200 15 3.60 5.377 220.652 | 0.9033
100 20 3.60 6.289 118.848 | 0.9261
100 25 3.60 8.170 90.162 | 0.9530
100 15 7.20 9.036 121.962 | 0.8727
100 15 9.20 10.440 | 99.738 | 0.8939
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After applying Adam’s-Bohart model to experimental
data, a linear relationship between In(C/Cy) and time (t)
according to Eq.(2) was constructed for the relative
concentration (C/Co) up to 0.5, i.e, 50% breakthrough.
For all breakthrough curves, respective values of Ny, and
kag were calculated and presented in Table 2 together
with correlation coefficients (R>>0.8727). The values of
ksg decrease with inlet methyl orange concentration and
solution flow rate, but it increases with bed height. This
shows that the overall system kinetics was dominated by
external mass transfer in the initial part of adsorption in
the column [10]. Although the Adams-Bohart model
provides a simple and comprehensive approach to
running and evaluating sorption-column tests, its validity
is limited to the range of conditions used.

3.2.2Thomas mode

Thomas model [10] assumes plug flow behaviour in the
bed, and uses Langmuir isotherm for equilibrium, and
second-order reversible reaction kinetics. This model is
suitable for adsorption processes where the external and
internal diffusion limitations are absent. The linearized
form of Thomas model can be expressed as follows:

1{%—1) =k”%—kmcoz 3)

1

where kq, (mL/min.mg) is the Thomas rate constant; qo
(mg/g) is the equilibrium methyl orange uptake per g of
the adsorbent; w (g) is the mass of adsorbent, Q
(mL/min) is the flow rate and total time (min) stands for
flow time. The value of C/Cy is the ratio of outlet and
inlet methyl orange concentrations. A linear plot of
In[(Cy/C)-1] against time (t) was employed (figure not
shown) to determine values of ky, and qo from the
intercept and slope of the plot.

Table 3. Thomas Model Parameters at Different
Conditions Using Linear Regression Analysis

Co H [Q(mL/ [ kupx10° [ qo R?
(mg/L) | (cm) | min) (L/mg | (mg/g)
min)

50 15 3.60 9.750 | 2.489 | 0.9797
100 15 3.60 7.343 | 4.137 | 0.9629
200 15 3.60 6.270 | 5.600 [ 0.9608
100 20 3.60 7.349 | 2984 | 0.9794
100 25 3.60 8.359 | 2.489 | 0.9822
100 15 7.20 10.117 | 3.173 | 0.9415
100 15 9.20 11462 | 2.624 | 0.9601

The column data were fitted to the Thomas model to
determine the Thomas rate constant (ky,) and maximum
solid-phase  concentration  (qp). The determined
coefficients and relative constants were obtained using
linear regression analysis according to Eq.(3) and the
results are listed in Table 3. It is found that the
determined coefficients (R?) are among 0.9415 to
0.9822. The values of k, and qo are presented in Table
3. As flow rate increases, the value of q, decreases but
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the value of kp, increases. As the inlet concentration
increases, the value of g, decreases while the value of kn,
increases. The reason is that the driving force for
adsorption is the concentration difference between the
methyl orange on the adsorbent and the methyl orange in
solution [8]. As the bed heights increase, the value of qo
increases significantly while the value of kr, decreases
significantly. Thus, lower flow rate, lower initial methyl
orange concentration and higher bed heights would
increase the adsorption of methyl orange on the bed
column. The Thomas model is suitable for adsorption
processes where the external and internal diffusions will
not be the limiting step [10].

3.2.3The Yoon-Nelson model

Yoon and Nelson [11] developed a model based on the
assumption that the rate of decrease in the probability of
adsorption of adsorbate molecule is proportional to the
probability of the adsorbate breakthrough on the
adsorbent. The Yoon-Nelson is a linearized model for a
single component system i expressed as:

Ct
ln('a_—aj = kYNt - kThT @

where kyy (1/min) is the rate velocity constant, T (min) is
the time required for the relative concentration region up
to 0.5. A linear plot of In[C/(Cy-C))] against sampling
time (t) according to Eq.(4) gives the values of kyy and ©
from the intercept and slope of the plot (figure not
shown). The values of Kyy and 7 are listed in Table 4.
The rate constant Kyy increases and 50% breakthrough
time 1 decreases with flow rate and inlet methyl orange
concentration. An increase of bed height, the values of t
increases while the values of Kyy decrease. Table 4
indicates that t values from the calculation are
significantly different from the experimental results.

Table 4. Thomas Model Parameters at Different
Conditions Using Linear Regression Analysis

C() H Q KYN T R2
(mg/ | (cm) | (mL/ (L/mg (min)

L) min) min)

50 15 3.60 0.488 8.283 | 0.9797
100 15 3.60 0.729 6.943 | 0.9629
200 15 3.60 1.245 4.700 | 0.9608
100 20 3.60 0.741 6.578 | 0.9794
100 25 3.60 0.841 6.874 | 0.9822
100 15 7.20 1.020 5245 | 0.9415
100 15 9.20 1.160 4322 | 0.9601

4. CONCLUSIONS

The fixed-bed adsorption system was found to perform
better with lower inlet methyl orange concentration,
lower feed flow rate and higher mixed clay-sand bed
height. The breakthrough point appears faster with
increase of liquid flow rate and initial methyl orange
concentration. The highest bed capacity of 7.34 mg/g
was obtained at the condition: 200 mg/L inlet methyl

orange concentration, 15 cm bed height and 3.60 mL/min
flow rate. The fixed-bed column adsorption system
containing mixed CTS/MMT-sand is effective to
removal methyl orange from aqueous solution. The
column experimental data were analyzed by the Adam’s-
Bohart, Thomas and Yoon-Nelson models. For methyl
orange adsorption, the column data were fitted well to
the Thomas and Yoon-Nelson models.

The use of MMT modified with other chemicals, for
example, cationic surfactant and strong acid might be
further studied for the pollution control.
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