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ARTICLE INFO ABSTRACT

Article history: This paper discusses the importance of modeling soil-pile interaction in the response of reinforced
Received 29 June 2008 concrete (RC) piles. A displacement-based, RC beam-column fiber model with distributed lateral
'2‘:':'2;:;;"2"[‘)"05;“ form deformable supports is presented first. The formulation is general and applies to both monotonic and
Accepted 3 March 2008 cyclic loads. The proposed model is simple, computationally efficient and capable of representing the

salient features of the soil-pile interaction, including dragging force and gap formation along the pile-soil
interfaces as well as hysteretic responses of piles and surrounding soils. Two applications are presented
to illustrate the model characteristics, to show the madel capabilities, and to discuss the importance of
modeling the pite-soil system. The first application deals with a single end-bearing pile embedded in a
cohesionless soil, The proposed beam-column model is used to investigate the effects of different model
parameters on the pile-soil response, including pile length, pile diameter, and pile and soil nonlinearities.
The second application validates the accuracy of the proposed medel with the experimental results of 2
cyclic test on a RC pile/shaft system where the influence of the pile-soil interaction is essential. Results
from the correlation studies indicate that the proposed model can represent well both global and local
responses of the pile-soil system. The effects of the interfacial characteristics between pile and soil on the
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system response are also studied.
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1. Introduction

Due to the increasing need for infrastructures and. the
decreasing availability of space, both structural and geotechnical
engineers are challenged to design, analyze, and evaluate more
expensive and strategic structural systems (e.g. high-rise buildings,
offshore platforms, multi-story highways, etc.) for extreme lateral
loadings (e.g. earthquakes, gusty winds, terrorist attacks, etc.).
In weaker soils, foundation piles, both single pile and pile groups,
may be used to transfer large superstructure loads through deeper
soils, In these cases, the influence of the foundation piles should
be included. Typically, seismic design codes (e.g. NEHRP-97 [1])
neglect the seismic behavior of the foundation piles, or they greatly
simplify it, because the structural-period lengthening due to the
foundation flexibility for most design spectra leads mainly to a
reduction in seismic design forces. This is not always the case
when near-fault ground motions (possibly containing long-period
pulses)are considered or when the structural displacements rather
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than the structural forces are the key design parameters, as in the
case of the Displacement-Based Seismic Design Methodology [2,3].
Furthermore, damages of the pile foundations during recent
destructive earthquakes (e.g. 1989 Loma Prieta Earthquake [4],
1995 Hyogoken-Nambu Earthquake [5,6), etc.) are reminders of
the importance of the foundation piles and of their influence on
the overall structural response. Consequently, the inclusicn of
the soil-pile system into the foundation numerical model may
be important for design, analysis, and performance evaluation of
structures under seismic actions. It is commonly accepted that
foundation piles should remain elastic under seismic loadings
in order to avoid difficuilt subsurface inspections and expensive
repairs of the damaged foundations. Nevertheless, the bending
moment induced in the piles by the design seismic actions
can be large enough to cause flexural damage in the piles, as
shown by recent post-earthquake investigations {4-6]. The flexural
damage in the piles can reduce both the foundation stiffness
and its strength, hence affecting the serviceability and load-
carrying capacity of the whole structure-foundation-seil system.
Furthermore, the role of the foundation piles in the seismic
rehabilitation of existing buildings is crucial. Seismic retrofit of
existing buildings can be economically achieved by the adding’
steel bracing or RC shear walis. This can however result in severe
seismic demands on the existing foundation piles,
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Fig. 1. 2-node displacement-based beam-column element with lateral deformable supports [16].

Thus far, several analytical models have been proposed in the
published literature to study the soil-pile interaction problem.
These models range from comparatively simple approaches in
which the soils surrounding the pile are represented as a set
of discrete springs, to sophisticated 3D finite element models.
These analytical models are classified here into three categories:
(a) elastic continuum medels [7]; {b) solid {2D or 3D) finite
element models [8-12]; (c) line (1D) beam-column elements
based on beam theories [13-15]. The pros and cons of the
aforementioned analytical models are summarized in Limkatanyu
and Spacone [16]. The beundary element models have also been
used to study the soil-pile interaction problem [17].

The main objectives of this paper are to present a newly
developed pile-soil beam-column element, to study its main
parameters, and to validate the proposed model through corre-
lation studies of large-scale tests on piles subjected to lateral
loadings. The formulation of the pile-soil beam-column element
is based on the principle of virtual displacements. Other ele-
ment formulations are presented elsewhere [16]. The Winkler
Foundation model is employed to represent the surrounding soils
(Winkler [18]). Two applications are presented to illustrate the
model characteristics, to show the model capabilities, and to
discuss the importance of modeling the pile-soil system. The first
application investigates the effects of several model parameters
on the lateral response of the pile-soil systems. The second
application deals with the correlation studies of a large-scale RC
pilefshaft experimental test. It is important to note that this study
focuses only on the soil-pile interaction in firm non-liquefiable
soils. The kinematic interaction due to scattering of the incoming
seismic waves and the soil liquefaction effects are not included in
this study. '

2. Definitions

The 2-node displacement-based beam-column element with
lateral deformable supports (e.g. soil) [16] is shown in Fig. 1.
The proposed beam—column element with lateral deformable
supports comprises two components: a 2-node beam—column,
plus continuous lateral springs representing the surrounding
deformable medium.

Using the notation of Fig. 1, the element nodal displacements
are:

v={u ) (1
where U* and U? are arrays containing the displacements at nodes
1 and 2, respectively. The corresponding nodal forces are P =

PP

The section displacements are grouped in the following array:

u®) = {up) v} ()

where uz(x) and vp(x) represent the axial and transverse
displacements, respectively.
The section deformations are grouped in the following array:

d(0) = {es(®) wa ()}’ (3)
where gz{x) and xp(x) are the axial strain and the curvature,
respectively.

The beam-column formulation follows the Euler-Bemoulli
beam theory. Based on the small deformation assumption, the
section deformations are found through the compatibility relations
£2(x) = dug/dx and kp(x) = dv3/dx*. In matrix notation:

dz(x) = dzu(x) {4)
where dj is the following differential operator:
d
— 0
=% o (5)
0 —
dxz
The corresponding section forces Dg(x) are:
Da) = [Na®) Ms(®))' (6)
where Ng(x) and Mg(x) are the axial load and the bending moment,
respectively.

The lateral deformations d.(x) are defined by the following
array:

&) = {dP)  dPtome) (7)

where d;*"(x) and d?"°™ (x) are the lateral deformations at the top
and bottom faces, respectively. Based on the Winkler foundation
theory, the lateral deformations are determined through the
following compatibility relations:

dP(x) = vg(x)
dOM (x) = wp(x).

Though these displacements are equal in the present formulation,
they are kept distinct to maintain generality. Eq. (8) can be
expressed in the following matrix form:

®

d:(x) = T;u(x) (9
where T, is a transformation matrix defined as:
01

Finally, the laterat forces DI (x) and DBt (x) corresponding to
the lateral-support deformations are grouped in the D;(x) array:

Di(x) = D) DPtm(n)]T. (11)



1978 S. Limkatanyu et al. / Engineering Structures 31 (2009} 1976-1986

3. Model formulation

The element formulation is based on the principle of virtual
displacements. The element displacements u{x) are expressed
as functions of the nodal displacements U through the shape
functions Na(x):

u(x) = Na(x)U. (12)

Ng(x) are well-known Hermitian polynomials that define a linear
axial displacement field and a cubic lateral displacement field.

3.1. Compatibility

Compatibility is enforced in the strong form. Upon substitution
of Eq. (12) into Eqs. (4) and {9), the section and lateral deformations
are directly related to the nodal dispiacements U through the
following equations:

dg(x) = Bg(n)U
d:(x) = B;,(x)U

where Bp(x) = 95Np () is the pile section deformation-displace-
ment matrix and B;(¥) = T,Np(x) is the soil deforma-
tion-displacement matrix.

(13)

3.2, Equilibrium

Elernent equilibrium is enforced in the weak form. Application
ofthe principle of virtual displacements and substitution of Eq.(13)
yield the following equation:

f B} (x)Dy (%) dx + f B! (x)D;(x)dx = P. (14)
L L

The total internal forces are expressed as the sum of the initial
section forces Dg (x)and Df (%) plus the force increments ADg (x) =
Ky (x)Adg (x) and ADs(x) = K, (x) Ads(x). kp (x) is the beam
section stiffness matrix and k; (x) is the matrix containing the
lateral-support stiffness. Then:

f Bj(x) [Ds®(x) + ks(x)Bj(x) AU] dx
L

+ f B () [D2 (%) + Ks(x) Bs(x) AU]dx = P. (15)
L

Eq. (15) is rearranged to obtain the foflowing incremental form of
the equilibrium:
KAU=P—P° (16)

where K is the element stiffness matrix and P is the element force
array

K=K+ K; (17)
P=P;+P (18)
P® = P) + P? is the array containing the element initial forces.

In Eq. (17), Kg is the beam-column contribution to the element
stiffness, and K; is the contribution of the lateral supports:

Ko = [ BjoKa(OBs (O
: (19)

K= [BOkoBO®
L

Similarly, in Eq. {18), Py is the beam-column contribution to the
element forces, and P; is the contribution of the lateral supports:

m:fﬂmmmu
: (20)
a:[ﬂwmmm
L

3.3. Section model

The cross section is subdivided into fibers. The beam section
forces Dg(x) are

nfib
s = Y {-voty o)’ @1
=1
where j represents the generic fiber and nfib is the number of fibers
in the RC section. y;, gy, and A; are the distance from the reference
axis x (Fig. 1), the stress, and the area, respectively, of fiber j of
the beam-column section. Indicating with E; the fiber modulus, the
beam-column section stiffness Kg(x) is

B[ A -viEi
= iy YiEifj
kB(x)—J;‘[_yJ,E A VE ,-A,-]- (22)

The lateral-support forces Dy(x) are:
Dy(x) = {o®D gP"omp}’ (23)

where o;™ and as'”“"‘“ are the lateral pressures at the top and
bottom interfaces, respectively. D is the width of the beam-colutmnn
section, The lateral-support stiffness matrix k,(x) is a diagonal
matrix defined as:

EP
koo =[5” Esb.,t?.,mp]. (24)

E™ and E™™™ are the moduli of the top and bottom lateral
supports, respectively.

The hysteretic behaviors of the concrete and steel laws are
schematically presented in Fig. 2. The Kent and Park [19] law is
used for the concrete. The tensile branch of the concrete is not
considered in the present study. The Menegotto and Pinto [20] law
is used for the steel reinforcement. For the present study, the finite
element program FEAP [21] is used to host the proposed element.

3.4. Monotonic and cyclic p-y curves of cohesioniess soils

In this study, the soils surrounding a pile are modeled as
1D springs continuously distributed along the pile length. Only
cohesionless soils are considered in this study. Based on the model
proposed by Reese et al. [22}, the ultimate soil lateral strength p,
can be computed as the lesser of the following two values:

P = ¥z [D(K,,—K..) +2z (K, — Ko) /Ky tana

1
K —— 41| tan¢ si 25
+z OJE(COSd + ) n¢ sm,ﬂ] (25)
pu = y2D (K + KoK tan ¢' — Ko) (26)
where K, = tan? (45° + ¢'/2) is the passive earth pressure

coefficient; K, = tan? (45° — ¢’/2) is the active earth pressure
coefficient; Ky is the at-rest earth pressure coefficient; ¢’ is the
effective internal friction angle; @ = ¢'/2 is the angle defining
the failure wedge shape; § = 45° + ¢'/2; y is the soil effective
unit weight; z is the depth from the ground surface; and D is
the pile diameter. The typical value of the at-rest earth pressure
coefficient K; is 0.4, as recommended by Reese and Van Impe {23].
Eq. (25) accounts for the wedge-type failure near the surface while
Eq. (26) accounts for the plane-strain failure at great depths below
the ground surface, The monotonic backbone p-y curves relating
the soil deformation to the soil pressure are shown for various
depths in Fig. 3. Each monotonic backbone p-y curve comprises
three linear portions and one parabolic portion. The initial linear
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Fig. 3. Characteristic shape of p-y curves for sand (proposed by Reese et al. [22]).

portion (oa) represents the elastic behavior of the soil for small
lateral defiections as suggested by Terzaghi {24]. The slope of this
linear portion is equal to the product of the modulus subgrade ny,
and the depth z measured from the surface. The recommended
values of ny, can be found in Reese and Van Impe [23]. The flat-top
portion (beyond c) represents the plastic behavior of the soil for
large lateral deflections. These two linear portions are connected
by a parabola {ab) and an inclined straight line (bc) in order to
obtain a shape consistent with the experimental p-y curves [22].
it is noted that the deeper soils are stiffer and stronger than the
shallower soils due to the high confining pressures.

The monotonic p-y curves of Fig. 3 serve as envelopes of the
two cyclic p-y shown in Fig. 4. The model of Fig. 4(a) is elastic-
perfectly plastic and ignores the gapping and dragging responses
of the surrounding soil. The model of Fig. 4(b) takes into account
the gapping and dragging responses observed during in situ tests
on piles under lateral cyclic loadings (e.g. Brown et al. [25]).
The hysteretic characteristics of the model developed by Arnold
et al. [26] are modified for the proposed cyclic p-y model (Fig. 4(b))

a
P
p --------------------------------------------------
¥
b
ﬂ
d l"" soil  gap
¥

Fig. 4. Hysteretic p~y models: {a) Elastic-perfectly plastic model; (b) Dragging-
gapping model.

The soil is loaded first along the monotonic branch oa and then is
elastically unloaded with the initial stiffness until it reaches the
dragging strength at ps at point b in Fig. 4(b). As unloading is
reloading and reloading continues in the opposite direction, the
soil moves through the gap untilitreaches the monotonic envelope
on the opposite side at point ¢. A sixth-order polynomial is used
to connect points b and ¢ to model the gap-closing process. The
same scenario of the unloading-reloading process is repeated for
the branch dea. The dragging force is activated only when the pile
moves through the gap. The value of the dragging strength py is
taken as 30% of the monotonic peak capacity py, as suggested by
Hutchinson et al. [27].

4. Applications

Two applications were selected to ‘investigate the model
parameters, to show the model capabilities, and to discuss the
importance of modeling the pile-soil sub-system. The first one is
a purely numerical example used to test the relevance of several
model parameters through a set of parametric studies. The second
one considers the experimental results of a cyclic test on a RC
pile/shaft system where the influence of the pile-soil interaction
is deemed essential.

4.1. Asingle pile embedded in sand

The pile-soil system shown in Fig. 5 is used to investigate the
effects of the model parameters on the system response. Thirty
beam-column elements are used to model the pile-soil system.
Such a refined mesh is used to ensure that the converged solution
is reached. The model parameters investigated include the pile
length, the pile diameter, and the pile and soil nonlinearities.

4.1.1. Pile length

In this section, the pile response is kept linear elastic and the
p-y curves of Fig. 3 are used to represent the responses of the
surrounding sand. The pile-length effects on the lateral behavior
are investigated by keeping the pile diameter constant at 05m
and varying the pile length from 5 to 15 m. Consequently, the pile
slenderness ratios (L/D) range from 10 to 30.The pile-length effects
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on the global response are presented in the form of the lateral
load-deflection curves in Fig. 6. The pile-length effects on the local
tesponses are shown through the pile deflected shapes inFig. 7 and
the moment distributions along the pile in Fig. 8. These responses
refer to a pile-head deflection of 0.15 m.

The pile length has little effect on the global response at the
early loading stages. The explanation can be found by observing
the pile deflected shapes in Fig. 7. lrrespective of the pile length,
the top 3 m deform approximately the same way. The deflections
of the rest of the pile, however, vary. The 5 m and 6.25 m long piles
act as poles instead of piles. The tip deflections of the short pile are
significant, hence resulting in yielding of the soils surrounding the
pile tips. Conversely, the additional length of the longer pile acts as
anchor and thus stiffens the pile.
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Fig. 8. Moment distributions along the pile for different pile lengths (for a head
displacement A = 0.15 m).
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Fig.9. Lateral load-displacement pile responses for different pile diameters.

Additionally, it can be observed that both glebal and local
responses converge when the pile length is larger than 7.5 m
(L/D = 15).In other words, the pile development length is appro-
ximately 7.5 m. This phenomenon is similar to the development
length of the reinforcing steel in RC structural elements. For
an elastic pile embedded in an elastic cohesionless soil, the
characteristic length of the elastic soil-pile system is YElny, =
4.72 m {28]. This value is smaller than the observed development
length of 7.5 m due to the fact that the characteristic length
increases when the soil becomes nonlinear. It is observed in Fig. 8
that the maximum bending moment location is approximately the
same for different pile lengths.

4.1.2. Pile diameter

In this section, the pile response is still kept linear elastic and
the p-y curves of Fig. 3 are used to represent the response of the
surrounding sand. The pile-diameter effects on the lateral behavior
are assessed by keeping the pile length constant at 15 m and
varying the pile diameter from 0.5 to 1.5 m. Consequently, the
pile slenderness ratio (L/D) varies between 10 and 30. The pile-
diameter effects on the global responses are presented in the form
of the lateral load-deflection curves in Fig. 9. The pile-diameter
effects on the local responses are shown by the pile deflected
shapes in Fig. 10 and by the moment distributions zlong the pile
in Fig. 11. These local responses are associated with the pile-
head deflection of 0.20 m. Compared to the lateral responses in
Fig. 9, it is observed that both lateral strength and stiffness of the
pile—scil system continuously increase with larger pile diameter.
It can also be noted that there is no converged response. This
happens because enlarging the pile diameter results in a delayed
sand yielding and in an increased lateral sand strength, This feature
is taken into account in the p-y sand mode} of Fig. 3. Also, larger
pile-diameters increase the pile-soil system stiffness.
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sSimilarly, there are no converged local responses found in
Figs. 10 and 11, Furthermore, it should be noted that the
system changes from pole to pile with increasing pile slenderness
ratios (reduced pile-diameters). It is observed in Fig. 11 that
the maximum-moment location gets deeper in the soil as the
pile diameter increases. The increase in pile diameter results in
mobilizing a greater soil depth.

4.1.3. Soil and pile nonlinegrities

In this section, the RC pile embedded in sand of Fig. 12
is used to investigate the effects of soil and pile nonlinear-
ities on the global and local system responses. This can be
accomplished by analyzing and comparing the following four
combinations: (a) Elastic-Pile/Elastic-Soil; (b) Elastic-PilefInelastic-
Soil; {¢) Inelastic-Pile/Elastic-Soil; (d) Inelastic-Pilejinelastic-Soil.
The aforementioned fiber-section model is used to represent the
sectional responses of the RC pile. The fiber discretization of the
RC pile section is shown in Fig. 12. The fiber section consists of
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Fig. 13. Lateral load-displacement responses for different pile-soil systems.
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180 confined concrete fibers, 36 unconfined concrete fibers, and
7 steel fibers. Using the labeling of Fig. 12, the material proper-
ties are f, = 421 MPa for the longitudinal reinforcement yield
stress; f = 40 MPa for the unconfined concrete strength; and
f! = 45.4 MPa for the confined concrete strength.

The global responses of the four different pile-soil systems are
shown in Fig. 13. Clearly, the soil and pile nonlinearities dictate
the global response of the systems. The elastic system results in
significantly larger stiffness and strength. Consequently, the soil
and pile nonlinearities become essential when the performance-
based methodology is employed in seismic design of structures.

The moment and curvature distributions along the pile
length are shown in Figs. 14 and 15, respectively. Since the
displacement-based model is employed in this study, there
are discontinuities in the curvature and moment distributions
between adjacent elements, because neither compatibility nor
equilibrium is enforced between the two end sections of two
adjacent elements. It is worth pointing out that the Gauss-Lobatto
integration scheme is used in the element implementation, thus
each of the two beam elements sharing a node has a monitored
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Elastic Modutus:  E,= 190300 MPa
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& #22Steed bar

Fiber Section Discretization

Fig. 12. Fiber-section discretization of RC pile section.
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section located at the nodal coordinates. The jump in the moment
distribution between adjacent elements is rather small in Fig. 14
and is not ciearly visible. Fig. 15 shows high curvature values
that are consistent with those measured experimentally by Chai
and Hutchinsen §29,30). In this particular case, a strain-hardening
response is observed at the section level, thus no strain localization
is to be expected. However, in other cases with a strain-softening
section response the prediction could become mesh-dependent
and the mesh should be carefully selected.

The local responses shown in Figs. 14 and 15 are associated
with a pile-head deflection of 0.20 m. It is interesting to observe
that the depth-to-maximum-moment ratio is larger when the
soil nonlinearity is considered. This is due to the fact that
yielding of the surrounding soil near the ground surface allows
redistributions of the internal forces in a pile, thus shifting down
the maximum-moment position. The pile~soil system is internally
statically indeterminate; hence redistribution of internal forces
is possible. The curvature distributions shown in Fig. 15 indicate
that neglecting the soil nonlinearity results in over-predicting
the curvature demand on the pile. This is due to the localization
of the plastic hinge formed in the pile embedded in the elastic
soil. The linear-elastic soil delays spreading of the plastic hinge,
hence resulting in a shorter plastic-hinge length. This results in
overestimating the local ductility demand on the pile.

Fig. 16 shows the deflected shapes of the piles for the different
pile-soil systems. This local response is associated with a pile-head
deflection of 0.20 m. It is abserved that longer pile lengths are
deformed when the soil nonlinearity is included. This is because
longer pile lengths need to be mobilized in order to redistribute the
internal forces in the system. The sections with higher curvatures
in Fig. 16 indicate the location of the plastic hinge.

Fig. 17 shows the soil-force distributions along the pile for
the different pile-soil systems. This local response is associated
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Fig. 17. Soil-force distributions along the pile for different pile-soil systems (for a
head displacement A = 0.20m}.
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Fig. 18. Cyclic responses of soil-pile systems with elastic and dragging-gapping
models.

with a pile-head deflection of 0.20 m. The trend in the soil-force
distribution along the pile is only dictated by the soil response.
Taking into account the soil nonlinearity results in a deeper
location of the maximum soil force. Taking into account the pile
nonlinearity results in a shallower maximum soil-force location.
It is worth reminding that the soil strength is depth-dependent.

Fig. 18 compares the global responses of the pile embedded in
the elastic soil with the pile embedded in the dragging-gapping
soil. It is clear that the elastic soil model over-predicts not
only the lateral strength of the system but aiso the hysteretic
energy dissipated. However, the amount of hysteretic energy
overestimated by the elastic soil model is not very large because
the hysteretic energy can be dissipated only through the plastic
hinge of the pile embedded in the elastic soil.

4.2, Chai-Hutchinson pile #1

Chai and Hutchinson [29,30] tested four RC piles embedded in
sand under constant axial compression and reversed cyclic lateral
displacements. These four piles representative of the Caitrans 31]
design for 70 ton piles varied in confining reinforcement ratio,
above-ground height, and sand density. In this paper, one
of the experimental tests is used to evaluate the validity
of the proposed beam-columa model. This pile is labeled
Chai-Hutchinson Specimen #1.

The geometry of this specimen is shown in Fig. 19. The
pile was subjected to a constant axial compression of 489 kN
(cotresponding to approximately J/A;) and the cyclic lateral
tip-displacement history shown in Fig. 20. The longitudinal
reinforcement for the pile section consists of 7 Grade A70G #
22 bars (diameter = 22 mm) corresponding to a longitudinal
reinforcement ratio pr = 2.1%. The transverse reinforcement for
the pile was provided by a continuous spiral of MW25 smooth wire
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Fig. 19. Geometry and loads of Chai-Hutchinson [29.30] specimen #1.

Fig. 20. Tip-displacement history of Chai-Hutchinson [29,30] specimen #1.

(diameter = 5.4 mm} at a 50 mm pitch. This amount of transverse
reinforcement corresponds to a transverse reinforcement ratio
g = 0.57%, approximately one half of that required by ATC-
32 [31]. Following Chai and Hutchinsen {29,30] and using the
labeling of Fig. 19, the material properties are f, = 421 MPa for
the longitudinal reinforcement yield stress; f = 41 MPa for the
unconfined concrete strength; and f/ = 45.4 MPa for the confined
concrete strength. As shown in Fig. 19, the surrounding sand has
effective internal friction angle ¢’ = 44°; effective unit weight
y = 18 kN/m?: and modulus of horizontal subgrade reaction
n, = 27500 kN/m? (as recommended by ATC-32 [32]). In the
numerical model, the pile is discretized into 25 elements, plus
15 elements representing the shaft. The effects of the geometric
nonlinearity on the system responses are also considered in the
numerical model by including the P-4 effects. This simplified
treatment of the nonlinear geometric effects can be found in
Filippou and Fenves [33}. The fibet-section discretization scheme
of Fig. 12 is used to represent the section responses of the RC pile.

Fig. 21(a} superimposes the tip load-displacement experimen-
tal response with the numerical simulations obtained with the
proposed model without dragging-gapping effects, while Fig.21(b)
compares experimental and simulated results obtained with
the model with dragging-gapping effects. As expected, both
models yield the same pile-soil strength, since the ultimate soil
pressures of both models are computed based on Eq. (25) or (26).
Neglecting the dragging-gapping effects can result in over-
prediction of the hysteretic energy of the systern. The model
with the dragging-gapping effects can reproduce the initial stiff-
ness and the peak lateral load, which is essential for the overall
strength of the structural system. Furthermore, the model withi the
dragging—gapping effects can also reproduce the hysteretic cyclic

Tip Force {(kN}

02 01 20 0.1 02 03

Tip Force (kN)

Fig. 21. Experimental and numerical responses of Chai-Hutchinson [29,30] speci-
men #1: (a) Mode! without dragging-gapping: (b) Model with dragging-gapping.

features of the system such as the unloading-reloading branches
and the post-peak strength degradation.

Fig. 22 shows the lateral-displacement profiles of the pile at
different loading cycles (the cycle numbers refer to the Jabeling of
Fig. 20). Clear changes in the siope of the displacement proftles are
observed. These are associated with the plastic-hinge formation,
especially for large displacement cycles. The lateral deflections are
rather small beyond the plastic-hinge region, implying that the
inelastic pile deformations localize only within a depth of few
pile diameters. When comparing the left (Fig. 22(a)) and right
(Fig. 22(b)) deflection profiles, one can observe the distinct features
of these two deflection directions. The gap formation along the left
deflection tends to be larger than that along the right deflection.
This behavior was also observed during the field tests by Chai
and Hutchinson [29,30}. This non-symmetrical behavior was not
captured when the dragging-gapping effects were not included in
the numerical model.
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Fig. 22. lateral-displacement profiles at different displacement cycles. (a) Left
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Fig. 23(a) and (b) show the pile moment and curvature profiles
at different load cycles (the cycle numbers refer to the labeling
of Fig. 20). As shown in Fig. 23, the depth-to-maximum-moment
ratio (which indicates the plastic-hinge location) obtained with the
proposed model is 1.25 m (3.08D). This value is in good agreement
with the test observations of maximum damage to the pile at 1.09
m (2.69D) [29,30].

Fig. 24 shows the soil local responses at various depths.
Fig. 24(a) shows the responses obtained with the elastic-perfectly
plastic model (Fig. 4(a}) while Fig, 24(b) shows the responses
obtained with the dragging-gapping model (Fig. 4(b)). As the depth
increases, the maximum lateral pressure also increases but the
maximum displacement decreases. This behavier is due to the
p-y model used. These local responses further indicate that the
dragging and gapping effects should be considered in order to
correctly account for the cyclic soil-pile interaction.

The importance of the nonlinear geometric nonlinearities on
the structural response was also investigated. The P-A effects are
included in the numerical model of Fig. 21(b). Fig. 25 shows the
same simulation, but the P- A effects are neglected. Although the
shaft height (2D) of the Chai-Hutchinson Specimen #1 (Fig. 19} is
relatively short, the P-A effect plays a crucial role in predicting
the strength of the pile/shaft system due to the flexibility of the
shaft base and the relatively high displacements applied. On the
other hand, the P-A effects have a small influence on the system
hysteretic energy.

5. Summary and conclusions

This paper presents a fiber beam-column model for a pile
element that explicitly accounts for the interaction between the
pile and the surrounding soil. The beam-colurnn formulation is
displacement based and leads to relatively simple and readily
implemented equations. Material nonlinearities are included inthe
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Fig. 23. Local response profiles at different displacement cycles: (a} Moment;
{b) Curvature.
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Fig.24. Cyclic p-yresponsesat different depths: {a) Elastic-perfectly plastic model;
(b) Dragging-gapping model.

uniaxial hysteretic laws for concrete, steel and surrounding soils.
The so-called “Winkler Foundation” is employed to represent the
sail in the form of p-y curves. The proposed p-y model can account
for the dragging force and the gap formation along the pile-soil
interfaces as well as the soil plasticity.
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The main scope of this woerk is to investigate the importance of
different model parameters, to show the model capabilities, and to
discuss the importance of modeling the pile-soil system when the
pile head undergoes large lateral displacements.

In the first application, parametric studies on an end-bearing
pile embedded in sand are used to investigate the effects of several
model parameters (e.g. pile length, pile diameter, and pile/soil
nonlinearities) on the lateral response of the pile-soil system.
A summary of the findings follows:

Pile length: The pile length affects both global and local
responses of the pile-soil system until a characteristic or
development pile length. Beyond this pite length, the responses
converge and the additional portions of the longer piles remain
basically unloaded. The position of the maximum moment is
approximately the same for different pile lengths. For relatively
short piles, the system response is that of a pole rather than a pile.

Pile digmeter: The pile diameter influences both global and
local responses of the pile-soil systems. Both lateral strengths and
stiffness of the pile-soil systems continuously increase with larget
pile diameters. The maximum-moment positions are significantly
affected by the pile-diameters. The maximum-moment location
gets deeper in the soil as the pile diameter increases because larger
pile diameters mobilize a greater soil depth.

Pile and soil nonlinearities: The soil and pile nonlinearities
are essential, particularly when performance-based procedures
are employed in seismic design of structures. The curvature
demand is significantly over-predicted when the soil nonlinearity
is neglected. The plastic-hinge location is deeper when the soil
and/or pile nonlinearities are considered. Consequently, including
the soil and pile nonlinearities in the analytical model can lead to
a better design and avoid costly post-earthquake repairs.

The second application deals with the correlation studies on a
large-scale test of a RC pile/shaft system under a constant axial
compression and cyclic lateral tip displacements. The correlation
studies indicate that the proposed model is capable of predicting
well both the global and local responses of the pile-soil system
despite the use of rather simple 1D p-y springs to represent
the surrounding soil. Neglecting the dragging and gapping effects
results in the overestimation of the hysteretic energy and of the
unloading-retoading stiffness of the pile-soil system. This feature
is essential when the pile response under earthquake excitation
is of interest. Although the shaft height (2D) is relatively short
in the test: it is important to include the P-A effects for a
correct prediction of the pilefshaft system response because of the
flexibility of the shaft base and the relatively large displacements
applied.

The two applications showed the characteristics and validity
of the proposed model. This research will continue with the
development of a soil-foundation-structuce system for modeling

the response of bridges and buildings subjected to ground motions.
Modeling the complete system may be important for large
structures with foundations on softer soils, where the flexibility of
the foundation-soil sub-system greatly affects the overall seismic
response.
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