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Abstract

In this paper, we present an ant-based algorithm for solving unconstrained multi-level lot-sizing problems called ant system for
multi-level lot-sizing algorithm (ASMLLS). We apply a hybrid approach where we use ant colony optimization in order to find a
good lot-sizing sequence, i.e. a sequence of the different items in the product structure in which we apply a modified Wagner–Whitin
algorithm for each item separately. Based on the setup costs each ant generates a sequence of items. Afterwards a simple single-stage
lot-sizing rule is applied with modified setup costs. This modification of the setup costs depends on the position of the item in the
lot-sizing sequence, on the items which have been lot-sized before, and on two further parameters, which are tried to be improved
by a systematic search. For small-sized problems ASMLLS is among the best algorithms, but for most medium- and large-sized
problems it outperforms all other approaches regarding solution quality as well as computational time.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Within computer-based enterprise resource planning (ERP) systems, such as SAP or BAAN, the part material
requirements planning (MRP) generates a production plan for each item over a given planning horizon. The production
plan of an end item causes secondary demand for its components. Taking into account purchasing, production, or
transportation lead times as well as current and planned inventory levels, the MRP approach determines the lot-sizes
of each component in all periods. Extending MRP, manufacturing resource planning (MRP II) also checks for capacity
violations in a capacity requirements planning (CRP) module. Afterwards, jobs are released and scheduled on the
machines.

The basic sequential MRP framework of master production scheduling, material requirements planning and lot-sizing,
capacity requirements planning and finally scheduling is known to have several key weaknesses:

1. The treatment of capacities is usually done in a rather rudimentary way. Uncapacitated lot-sizing approaches are
typically used to derive production plans whose capacity is evaluated through the CRP module. CRP simply provides
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a signal that the production plan violates capacity limitations. Thus, it can be considered as an information-gathering
procedure rather than a decision-making one. Afterwards an iterative search for a schedule that satisfies the capacity
constraints follows. However, material and capacity planning should be done in parallel, rather than in sequence.
These capacitated multi-level lot-sizing (MLLS) problems have been studied in a series of papers, see e.g. the
conceptual discussion by Billington et al. [1] or the heuristic approaches by Tempelmeier and Derstroff [2] or
Tempelmeier and Helber [3].

2. Since lead times are in fact dependent on product mix, shop load, and capacity they should be viewed not as inputs
to a scheduling procedure but rather as part of the output. Thus, it would be desirable to do some simultaneous
planning over several of the steps mentioned, e.g. lot-sizing and scheduling (see e.g. [4]).

3. Even when disregarding the above points (1) and (2), MRP systems do not really provide an efficient methodology
since commercially-available MRP softwares typically use the simplest (and suboptimal) lot-sizing approaches.

While (1) and (2) are important, this paper focuses on point (3). One could justify this by the fact that, in practice,
uncapacitated lot-sizing models continue to be largely used since the implementation of capacitated approaches requires
a lot of data which firms are often reluctant to collect or maintain. Also, we plan to extend the approach used here to
capacitated problems.

In what follows, we consider uncapacitated lot-sizing problems. The single-level lot-sizing (SLLS) problem is the
simplest category among these. Wagner and Whitin [5] introduced this model and developed a well-known exact
algorithm based on dynamic programming. Subsequently a large number of heuristics was developed such as Silver
and Meal [6] based on the idea of minimizing average setup cost and inventory cost over several periods.

Multi level lot-sizing (MLLS) problems is a more general class of combinatorial optimization problems, where the
aim is to find a production plan for all items in the bill of materials (BOM). It should be noted that this problem
class is more difficult than SLLS and is usually solved heuristically. There are three types of product structures: (a)
assembly system (each item may have several predecessors, but at most one successor), (b) serial system (each item has
at most one predecessor and one successor), and (c) the general system (each item can have more than one successor
and predecessor). Several solution approaches have been developed for each of these three problem classes. We will
consider the general systems which includes also the other two types.

The most straightforward way to solve MLLS problems is to use decomposition by product. First, lot-sizing is
done for all end items using a SLLS technique. With the secondary demand induced by lots of direct successors, the
components of the highest level in the BOM are lot-sized, and so on until the raw materials are reached; see e.g. [7,8].
It has been known for a long time that this approach disregards the effects of lot-sizing on the parts contained in the
current product which leads to solutions which induce unnecessary high setup and holding costs.

Modifying costs is a way to achieve some degree of inter-level coordination. Setup costs are altered to account
for the fact that placing an order for a certain item can trigger orders for its predecessors. Some approaches also
modify the holding costs. These adjusted costs are used when applying some SLLS method to each item in the product
structure. Blackburn and Millen [9] designed five types of adjustment for setup and holding cost and used them in
single end-item assembly systems. Bookbinder and Koch [10] extended this approach to systems with a general product
structure.

Recently, Dellaert and Jeunet [11] proposed a randomized MLLS heuristic for general product structures. Their
contribution was twofold: (1) instead of using a constant modified setup cost for the whole planning horizon, they
allowed time-varying setup cost. In each period, the setup costs of each product are only adjusted by those predecessors
without positive demand. If a predecessor faces some primary (external) demand or has to be produced because of
secondary (internal) demand caused by some other product, adding some secondary demand would not cause any setup.
Thus, the setup costs of this predecessor should be disregarded in the adjustment process of the setup costs. (2) They
also randomized their algorithm by multiplying the adjustment term with a certain factor. The “optimal” value of this
factor was determined using Monte Carlo simulation.

A number of metaheuristics have also been applied to MLLS problems. Kuik and Salomon [12] introduced a simulated
annealing algorithm, Dellaert and Jeunet [13] developed a genetic algorithm, and Jeunet and Jonard [14] proposed a new
heuristic based on three single-point stochastic searches: simulated annealing, simulated tempering, and hill climbing.
These recent approaches will serve as benchmarks for our algorithm which is based on ant colony optimization (ACO).

The ACO metaheuristic was first proposed by Colorni et al. [15] in 1992. The main idea of ACO is that a population
of artificial ants repeatedly builds and improves solutions to a given instance of a combinatorial optimization problem.
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From one generation to the next a global memory is updated that guides the construction of solutions in the successive
population. The best solutions found so far by the ants are used for the memory update. After the construction phase of
the algorithm usually a local search is applied to improve the solutions of the ants.

ACO algorithms have been successfully applied to a variety of combinatorial optimization problems such as the
traveling salesperson problem, the quadratic assignment problem, different variants of the vehicle routing problem, the
graph colouring problem and different variants of machine scheduling problems. For an overview of the most successful
applications we refer to Dorigo and Stützle [16]. A convergence proof for an ACO algorithm can be found in [17,18].

Our ant system for multi-level lot-sizing (ASMLLS) algorithm is based on the MAX-MIN ant system (MMAS),
proposed by Stützle and Hoos [19,20], which is a particular variant of the ACO metaheuristics. A convergence proof
for the MMAS can be found in [18].

The contribution in this paper is threefold:

• While previous metaheuristics approaches to MLLS problems (see above) always worked directly using the IP-
formulation of the problem, we demonstrate that an effective way of quickly obtaining new best solutions is to use
the constructive randomized MLLS heuristic of Dellaert and Jeunet [11] and to optimize the lot-sizing sequence of
the products using ACO.

• We show that it is advantageous not to keep constant the adjustment factor in the modified setup cost approach
over the construction phase but to choose different factors for the early products (end items) and the late products
lot-sized (parts).

• In fact, we optimize both, the average value of this adjustment factor and the increase or decrease of this factor using
an evolutionary approach in connection with the ACO algorithm. In this sense our algorithm could be viewed as
being hybrid.

Using all available test instances from the literature we show that all of the above design decisions of our approach
contribute to the solution quality and that for medium- and large-size benchmark instances our algorithm outperforms
all other algorithms published so far.

The paper is organized as follows: Section 2 is dedicated to the presentation and mathematical formulation of the
MLLS problem. In Section 3, a general framework of the proposed algorithm will be discussed. The experimental
framework and the computational results will be presented in Section 4. Finally, conclusion and outlook can be found
in Section 5.

2. Model formulation

In this section we formulate a mixed-integer program (MIP) which represents the MLLS problem. First, we introduce
the necessary notation:

�(i) set of immediate successors of item i
�−1(i) set of immediate predecessors of item i
ci,j quantity of item i required to produce one unit of item j
Di,t external requirement for item i in period t
hi holding cost for item i (assumed to be constant over time)
Ii,0 initial inventory of product i
li lead time of item i
P total number of items (end-products, sub-assemblies and raw materials)
si setup cost for item i (assumed to be sequence-independent)
T total number of periods

For the decision and auxiliary variables we use the following notation:

di,t total requirement for item i in period t
Ii,t inventory level of item i at the end of period t
xi,t delivered quantity of item i at the beginning of period t
yi,t binary variable which indicates if an item i is produced in period t (yi,t = 1) or not (yi,t = 0)
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The resulting MIP can be written as follows:

min
yi,t ,xi,t ,Ii,t ,di,t

P∑
i=1

T∑
t=1

(siyi,t + hiIi,t ) (1)

subject to (each constraint must hold ∀i, t)

Ii,t = Ii,t−1 + xi,t − di,t , (2)

di,t =
{

Di,t if i is an end-item (�(i) = ∅),∑
j∈�(i) ci,t xj,t+lj + Di,t otherwise (�(i) �= ∅),

(3)

xi,t − Myi,t �0, (4)

Ii,t �0, xi,t �0, yi,t ∈ {0, 1}. (5)

The objective function in (1) is the sum of ordering and inventory holding cost for all items over the planning horizon
of length T. Since we do not allow backorders, the per unit production cost are neglected. Eq. (2) is the inventory
balance equation. Requirement constraint (3) consist of the external demand when end-items are considered, and result
from the lot-sizes of the immediate successors for components. We allow also external demand for components, i.e.
components may be sold to outside buyers or there may be an internal demand caused by planned lots of successors
outside the considered planning horizon. Constraint (4), with M being a large number, captures the fact that a setup cost
is incurred whenever a batch is purchased or produced. Finally, constraint (5) states that backorders are not allowed
and production being nonnegative.

3. ASMLLS algorithm

We develop the ASMLLS algorithm in several steps starting from the randomized cumulative Wagner–Whitin
(RCWW) method, which was introduced by Dellaert and Jeunet (see [11]). As a first extension we use different
modified setup costs for each product depending on the actual position in the production sequence (STVS—sequence-
dependent time-varying setup cost). Then we add a MMAS to search for a good production sequence, and finally we
introduce a systematic search for a good modification of the setup cost.

3.1. RCWW

In this section, we will discuss the concept and the influence of the time-varying modified setup cost approach.
Several authors have suggested methods of modifying setup costs when solving MLLS by a series of SLLS (e.g. [21]).
Dellaert and Jeunet introduced the concept of time-varying modified setup cost in their RCWW algorithm (see [11]).

For the RCWW the setup cost for each product is modified based on the fact that lot-sizing this product in the current
period enforces new lots for products in previous periods. This means, if we decide to deliver product i in period t, then
this fact results in an additional demand for some predecessor j in the period t − li , when the production of i starts.
Now we consider two cases: (i) if product j has already a positive demand in that period, no additional costs arise; (ii)
if there is no positive demand for product j we have to produce it and we must add the (modified) setup cost. So using
the following notation:

Si,t modified setup cost of product i in period t
T (i, j, t) binary variable taking the value of 1 if a lot-size of item i, delivered in period t, generates a new

lot for item j in period t − li , when j ∈ �−1(i). T (i, j, t) is equal to zero if there is already a
positive demand for item j in period t − li (this demand results from a planned lot-size for another
successor of item j)

r U [0, 1], uniformly distributed random variable
we can formulate the time-varying modified setup cost as

Si,t = si + r
∑

j∈�−1
i

T (i, j, t)
Sj

|�j | , (6)
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where Sj can be calculated recursively by

Si = si +
∑

j∈�−1
i

Sj

|�j | . (7)

The variable T (i, j, t) is not fixed a priori, but it depends on the sequence in which the lots of the different items
are determined. That means that if we perform the Wagner–Whitin (WW) algorithm (cf. [5]) for a particular item, we
generate automatically new demands for its predecessors in certain periods. If we want to lot-size the next item which
has a common predecessor with the previously lot-sized item, we have to take into account that not every additional
demand for that predecessor results in a new lot. Hence, in Eq. (6) the setup costs are modified if and only if new lots
would be necessary for some predecessor and therefore additional setup costs occur.

The factor r is a random variable which is used to weight the influence of the setup cost of the predecessors. Note
that the modified setup costs depend on the sequence of the products lot-sized. Partly the sequence is determined by the
bill of materials, but if there are several possibilities, the products are picked at random with a probability proportional
to their unmodified setup cost si . Each of these products is lot-sized using a WW algorithm with the modified setup
costs.

The RCWW algorithm produces several solutions according to the above description with different r-values and
selects the best solution obtained.

3.2. RCWW-STVS

We extend the RCWW approach from Section 3.1 by systematically selecting different r for different products. We
select two parameters R ∈ [0, 0.5] and u ∈ [−1, 1] e.g. randomly or adaptively. (In Section 3.3 we use a systematic
search for the best pair (R, u).) For each product i the factor ri is calculated based on the current position �i ∈ {1, . . . , P }
of the product in the lot-sizing sequence:

ri = R

(
1 + P − 2�i + 1

P − 1
u

)
. (8)

Note that for the first product lot-sized (�i = 1, some end item) we obtain r = R(1 + u) while for the last product the
factor is r = R(1 − u). Thus, R is the average value of r over all products and u determines the slope. The modified
setup costs are now

Si,t = si + ri
∑

j∈�−1
i

T (i, j, t)
Sj

|�j | . (9)

Depending on the sign of u we can distinguish between two different cases: (i) if u is positive, the factor ri decreases
with each product in the lot-sizing sequence; (ii) if u is negative, this factor increases. So in the first case we use higher
modified setup costs for the first items and lower setup costs for the intermediate items. (For the raw materials we do
not change the setup cost because they have no predecessors.) This leads to a lower number of lots, but larger lots for
the first items. In the second case, the first products will be produced in more periods, but with smaller lot-sizes.

Example 1 (data from Dellaert and Jeunet [11]). We use a product structure as given in Fig. 1 with 9 products. We
consider a time horizon of 9 periods, where the demand for item 1 in each period is 〈0, 0, 0, 0, 10, 15, 10, 12, 20〉 and
the demand for item 2 is 〈0, 0, 0, 0, 0, 50, 40, 20, 30〉. The number in the circle is the product number. On the right-hand
side the setup costs are written and on the left-hand side the lead time. Unit inventory holding cost of the 9 items are
{13, 8, 4, 4, 3, 3, 2, 1, 1}.

At the beginning of the procedure, we choose a sequence (for the RCWW we choose a random sequence, for the
ASMLLS the ants generate the sequence) and select R and u. Since we have to consider the product structure we select
〈2, 5, 1, 3, 4, 6, 8, 7, 9〉 as the sequence and assume R = 0.431183, and u = 0.956399. So we start with item 2 and
have to determine the modified setup cost. All binary variables T (i, j, t) are 1 because no lots are determined yet. The
modified setup cost have to be calculated from the bottom to the top of the product structure. First, we determine the
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Fig. 1. Product structure used in example 1.

modified setup cost for items 8 and 9, which are always equal to the original setup costs. Then we can modify the setup
costs for items 6 and 7 considering the factors r6 and r7, which are calculated from R and u. We continue upwards
level-by-level until we can calculate the modified setup cost for item 2. In Table 1, we summarize the results for this
example. The first three columns show for each product: the product number i, the original setup cost si and the factor
ri . Since u is positive, the ri are decreasing from the first to the last product in the sequence. The remaining part of
the table shows the modified setup costs and the lot-sizes of the products in each period. In parentheses we report the
corresponding results from Dellaert and Jeunet [11]. The total cost for our solution is 2217, whereas the solution of
Dellaert and Jeunet with a fixed r = 0.431183 (which is the same as the average ri in our example) is 2257. Due to the
changing ri the modified setup cost for the first items (2, 5, 1, 3) are considerable larger, but for the items 4 and 6 the
costs are lower. This explains also the difference in the lot-sizes. Especially for the first items we obtain fewer lots than
in the solution of Dellaert and Jeunet.

Let us come back to the calculation of the T (i, j, t) parameters. Assume we have already fixed the lots for items
2 and 5. The next item in the sequence is item 1. Since none of the items 3, 6, and 8 is an immediate predecessor of
items 2 or 5, T (1, 3, t), T (1, 6, t), and T (1, 8, t) are 1 for all periods. Item 4 is an immediate predecessor of item 2,
and production of item 2 was scheduled for periods {6, 7, 9}. Because of the 2-periods lead time of item 2, these lots
generate a demand for item 4 in the periods {4, 5, 7}. So if a new lot of item 1 generates a demand for item 4 in one of
the periods {4, 5, 7}, it is not necessary to include the setup costs. Since item 1 has a lead time of one period, we set
T (1, 4, 5) = T (1, 4, 6) = T (1, 4, 8) = 0. For the other periods we set T (1, 4, t) = 1.

To illustrate the influence of the choice of R and u we recalculate the example with the same lot-sizing sequence,
but with R = 0.36898 and u = −0.87656. The result is shown in Table 2. The negative u leads to lower modified setup
costs for the first items in the sequence and higher costs for the last items. For an example this fact causes to use 4
instead of 3 lots for item 2. The total costs are a 2257, which is equal to the total costs Dellaert and Jeunet reported,
but the solution is slightly different. Fig. 2 shows the different ri-values for the two situations calculated before.

3.3. ACO algorithm

3.3.1. Standard ACO procedure
The main idea of ACO is that a population of artificial ants repeatedly builds and improves solutions to a given

instance of a combinatorial optimization problem. From one generation to the next a joint memory is updated that
guides the search of the successive populations. The memory update is based on the solutions found by the ants and is
biased by their associated quality.

After the initialization of the joint memory the standard ACO algorithm mainly consists of the iteration of three steps:

Step 1. Construction of solutions by ants according to heuristic and pheromone information.
Step 2. Application of a local search to the ants’ solutions.
Step 3. Update of the pheromone information.

We explain the implementation of these three steps in the example of the travelling salesperson problem (TSP)
which is the elementary sequencing problem. The TSP can be represented as a complete graph with a number of nodes
also called cities. It is necessary to find a shortest closed tour visiting each of the cities exactly once. An artificial
memory—so-called pheromone information �ij (m) is associated with each arc (i, j) connecting city i and city j. This
value gives information for iteration m how desirable it was to visit customer j immediately after customer i in previous
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Table 1
The modified setup costs and lot-sizing decisions in Example 1: In each line the numbers in the first half-line represent the values for the case
(R, u) = (0.431183, 0.956399), in which the correction factor ri increases with i

i si ri Period 1 2 3 4 5 6 7 8 9

2 60 0.84 S2,t 195.7 195.7 195.7 195.7
(0.43) (129.4) (129.4) (129.4) (129.4)

X2,t 50 60 30
(50) (40) (20) (30)

5 80 0.74 S5,t 91.1 91.1 91.1 91.1 91.1 91.1
(0.43) (86.5) (86.5) (86.5) (86.5) (86.5) (86.5)

X5,t 50 60 30
(50) (60) (30)

1 50 0.64 S1,t 128.6 128.6 170.6 128.6 170.6
(0.43) (103.2) (103.2) (103.2) (103.2) (131.6)

X1,t 10 25 12 20
(10) (15) (10) (12) (20)

3 30 0.53 S3,t 44.3 30 30 44.3 30 30
(0.43) (41.5) (30) (30) (30) (30) (30)

X3,t 10 25 12 20
(10) (25) (12) (20)

4 90 0.43 S4,t 96.5 90 90 96.5 90 96.5
(0.43) (96.5) (90) (90) (90) (90) (96.5)

X4,t 60 85 62
(60) (55) (30) (62)

6 20 0.33 S6,t 39.7 39.7 26.6 26.6 39.7 26.6 26.6
(0.43) (45.9) (45.9) (28.6) (28.6) (28.6) (28.6) (28.6)

X6,t 70 120 25 74 32 20
(70) (90) (45) (84) (32) (20)

8 80 0.22 S8,t 80 80 80 80 80 80 80 80
(0.43) (80) (80) (80) (80) (80) (80) (80) (80)

X8,t 70 155 131 52
(70) (145) (141) (52)

7 10 0.12 S7,t 12.4 10 10 10 10 10 10
(0.43) (18.6) (10) (10) (10) (10) (10) (10)

X7,t 60 135 60 62 30
(60) (105) (90) (62) (30)

9 40 0.02 S9,t 40 40 40 40 40 40 40 40 40
(0.43) (40) (40) (40) (40) (40) (40) (40) (40) (40)

X9,t 60 205 180 87 104 52
(60) (175) (180) (107) (114) (52)

The numbers in parentheses below refer to the results with constant r = 0.431183 as used by Dellaert and Jeunet.

iterations. This information is used in the construction step (Step 1) of the algorithm. The pheromone information is
modified in Step 3 of the algorithm.

In the construction phase (Step 1) of the algorithm a number of ants are placed on randomly chosen cities. Then, in
each construction step, each ant moves from the current city to another not yet visited city. The next city is selected
on the basis of a probabilistic decision. The probabilistic choice is biased by a local heuristic information �ij and the
pheromone information �ij (m). In the TSP a reasonable heuristic information �ij is the inverse arc length of visiting
customer j after customer i. Next cities are more likely chosen when they are close to the current city and they have a
high pheromone value for visiting city j immediately after city i. Each artificial ant in its current position i decides to
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Table 2
Result of Example 1 in case of (R, u) = (0.36898, −0.87656) in which the correction factors ri decrease

i si ri Period 1 2 3 4 5 6 7 8 9

2 60 0.05 S2,t 67.3 67.3 67.3 67.3
X2,t 50 40 20 30

5 80 0.13 S5,t 81.9 81.9 81.9 81.9 81.9 81.9
X5,t 50 60 30

1 50 0.21 S1,t 75.6 75.6 75.6 75.6 89.2
X1,t 10 15 10 12 20

3 30 0.29 S3,t 37.7 30 30 30 30 30
X3,t 10 15 10 12 20

4 90 0.37 S4,t 95.5 90 90 95.5 90 95.5
X4,t 60 55 30 62

6 20 0.45 S6,t 47.0 47.0 29.0 29.0 29.0 29.0 29.0
X6,t 70 80 55 84 32 20

8 80 0.53 S8,t 80 80 80 80 80 80 80 80
X8,t 70 145 141 52

7 10 0.61 S7,t 22.2 10 10 10 10 10 10
X7,t 60 105 90 62 30

9 40 0.69 S9,t 40 40 40 40 40 40 40 40 40
X9,t 60 175 170 117 114 52

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Φ i

r i

(R,u)=(0.37,-0.88)
(R,u)=(0.43,0.96)

Fig. 2. Different correction factors ri for example 1.

go to the city j with the probability

Pk
ij (m) =

{ �ij (m) · �ij∑
(l∈Ni )

�il(m) · �il

if j ∈ Nk
i ,

0 otherwise.
(10)
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Procedure ASMLLS

/* Initialization phase */
Generate initial Rb and ub using RCWW-STVS
(select best solution out of 20 randomly constructed ones)
Initialize pheromone information
while (termination condition not met) do

for each ant do
/* Construction phase */
Construct the production sequence according to the decision rule (12).
/* Adaptation of R and u values for each ant */
Choose R randomly out of the set {Rb(1 −   ), Rb, Rb(1 +   )}
Choose u randomly from {max{−1,ub(1−   )}, ub, min{1,ub(1 +   )}}
Calculate ri according to equation (8)
Perform STVS (WW approximation) to evaluate the sequence

end
/* Pheromone update phase */
Update the pheromone matrix according to (14), update Rb and ub

end

Fig. 3. Pseudo code of ASMLLS.

The set Nk
i is the feasible neighborhood of the artificial ant k, which is the set of cities which have not been visited

so far. In the standard ACO framework a solution obtained by the above-mentioned procedure can then be subjected to
a local search in order to ensure local optimality (Step 2).

After all ants have completed their solution, the pheromone information is updated (Step 3). This is done first, by
lowering the current pheromone amount by a constant factor. This procedure is also called pheromone evaporation.
Furthermore, some ants with the best solution quality are allowed to update the pheromone information, i.e. depositing
“artificial” pheromone on the arcs of their solution. In the MMAS only the global best ant is used to update the
pheromone information after each iteration. The pheromone update rule is given by

�ij (m + 1) = ��ij (m) + ��∗
ij , (11)

where ��∗
ij = 1/f (s∗) if the global best ant (having costs f (s∗) has visited arc (i, j) and ��∗

ij = 0 otherwise. To avoid
too extreme differences between the pheromone values in the MMAS explicit limits (�min, �max) on the minimum and
the maximum pheromone values are introduced; see (14) below.

3.3.2. ASMLLS
In Section 3.2, we have developed an algorithm for lot-sizing the products based on a given sequence of products

which were chosen (more or less) randomly. We now add a MMAS algorithm for finding an optimal sequence of the
products in order to minimize the total costs.

Each ant generates a lot-sizing sequence. As visibility �j we use the original setup cost sj (see Formula (12)) which
is exactly what Dellaert and Jeunet [11] did in their random selection. We do not apply a local search procedure because
the calculation of the total cost through the WW algorithm is very time consuming. Moreover, the results in Section 4
indicate that it is not necessary to include a local search procedure. The Pseudo code in Fig. 3 illustrates the adaptations
of the standard ACO to solve the MLLS. We call this modified algorithm ASMLLS.

The algorithm starts with the initialization phase. In this phase the standard initialization routines like initializing the
pheromone matrix are performed. Besides the standard initialization routines also values for Rb and ub are generated
randomly (see (8)). Within this phase the values for Rb and ub which provide the best solution quality out of 20 randomly
generated solutions are selected as initial values. After the initialization phase the construction phase is executed. In this
phase, each ant generates a sequences of items. Now for each sequence all the items will be lot-sized, step-by-step, by
the RCWW-STVS algorithm. After all the ants have constructed their solution and the solution qualities are computed,
the pheromone update is applied. As already explained in Subsection 3.3.1 in the MMAS the best solution found so far
is allowed to update the artificial pheromone.
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For the pheromone information we tested two different pheromone encoding schemes. We implemented the standard
pheromone encoding for sequencing problems, where each element in the pheromone matrix �ij gives the desirability
of lot-sizing item j immediately after item i. As alternative test design we implemented a pheromone encoding scheme
which was developed for scheduling problems by Stützle [22] and also used by Merkle et al. [23]. In this pheromone
encoding �pj denotes the desirability of lot-sizing item j as the pth item.

We now describe the latter approach. We consider a MLLS with P products and initial setup costs sj . Each ant
constructs a production sequence. At each step in the construction phase an ant decides which item will be lot-sized
at the current position of the sequence. The probability that an item is selected on a particular position is determined
according to the random proportional rule (12).

For the pheromone used in the decision rule we do not just consider the current pheromone value of lot-sizing item
j in the current position p. Instead, we consider also all the pheromone values of lot-sizing item j in all the predecessor
positions of p. We denote the decision rule where this pheromone usage scheme is used as summation decision rule in
the following. The summation rule was introduced by Merkle and Middendorf [24].

pk
pj (m) =

⎧⎨
⎩

[∑p
o=1 �oj (m)]�[sj ]�∑

l∈Nk
p
[∑p

o=1 �ol(m)]�[sl]�
if j ∈ Nk

p,

0 otherwise,

(12)

where �pj (m) is the intensity of pheromone trail of product j in position p at iteration m, � is the parameter to regulate
the influence of �pj (m), � is the parameter to regulate the influence of sj , Nk

p is the set of selectable products in position
p of ant k based on the bill of materials.

Remark. Alternatively we also tested the standard decision rule considering only the pheromone of the current position
in the sequence (see Section 4.3).

pk
pj (m) =

⎧⎨
⎩

[�pj (m)]�[sj ]�∑
l∈Nk

p
[�pl(m)]�[sl]�

if j ∈ Nk
p,

0 otherwise.

(13)

As usual in MMAS, the best ant updates the pheromone, but the values are bounded to the interval [�min, �max]:
�pj (m + 1) = max(�min, min(�max, ��pj (m) + ��pj (m))) (14)

with

��pj (m) = 1

f (s∗)
,

�max = 1

1 − �
× 1

f (s∗)
,

�min = �max(1 − p
√

0.05)

((P/2) − 1)
p
√

0.05)
,

where � ∈ [0, 1] is the trail persistence parameter to regulate the evaporation of �pj , ��pj (m) is the total increase of
trail level on edge (p, j) which is controlled by maximum and minimum value along with the concept of MMAS,
f (s∗) is the global best solution value. The pheromone bounds are the standard MMAS values suggested in [19].

An open question is how to select R and u for applying the RCWW-STVS algorithm for lot-sizing the products and
determining the costs of sequence the ant found. One could choose these parameters randomly. But tests have shown
that a systematic search of optimal values for R and u gives better solutions (cf. Section 4).

This systematic search for good values for R and u is done as follows. We augmented the standard MMAS with
the component of selecting R and u by using ideas of evolutionary strategies. In some initial phase, we start with
randomly generating some values for R and u. Let Rb and ub be the values that generated the best solution in this
initial phase of ASMLLS. When selecting (R, u) each ant chooses randomly either (Rb, ub) or one of the combinations
(Rb ± ϑRb, ub ± ϑub). The best solution of each iteration determines the new (Rb, ub). In some pre-tests we have
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shown that this procedure gives better solutions than choosing R and u constant by taking the best values from the
initial phase.

An open question is how big ϑ should be? To find an answer for this problem we have performed some experiments
and we found that ϑ should be in the interval of 0.03–0.075 and that the performance is not very sensitive with respect
to this parameter. Hence we used 0.05 in our computational experiments.

4. Computational results

In this section, we turn to the description and analysis of the results obtained by our computational tests. OurASMLLS
algorithm was coded in C and compiled using Borland 6. We performed all runs on a personal computer with a Pentium
4-1.5 Ghz microprocessor, 256 MB RAM and the operating system Windows XP.

4.1. Experimental framework

We compare our algorithms with the data set used in Dellaert and Jeunet [13]. The test problems are grouped into
small, medium and large-scale problem instances. The small-sized problems are composed of 4 different assembly
systems (2–5 production levels), 5 items, 12 periods, 4 combinations of holding cost and setup cost and 6 demand
series. This makes 96 problem instances.

The medium-sized problems include of two 50-items assembly systems (one with 9 and the other with 16 production
levels) and two 40-items general systems (with communality indices1 1.39 and 1.18). For each problem two planning
horizons are defined, 12 and 24 periods. For each combination of product structure and planning period 5 sets of setup
cost and holding cost are used. This yields 40 problem instances.

The large-scale problems are composed of four 500-item general systems with 4 different communality indices (1,
1.6, 2.2, 2.8), 5 different production levels (5, 7, 9, 13, 18) and two planning horizons (12, 24) for each problem. Hence
we get 40 problem instances.

4.2. MMAS parameter settings

We choose the following parameter settings for the MMAS: �=1, �=1 and the trail persistence �=0.98 as proposed
in [19,20]. We set the number of ants equal to 5. In pretest we have shown that we get almost the same results when we
use a larger population (10 or 20 ants). Therefore we choose a smaller population for runtime reasons. To make results
comparable, the runtimes of Dellaert and Jeunet [13] were converted according to the different machines by using the
information provided by Dongarra [25].

4.3. Pretests

First, we want to analyze the contributions of our design decisions to solution quality by adding the different
modifications step by step. For this purpose, we applied the different algorithms with the different modifications to all
problem instances.

First we compare the results for the small instances. These instances can be solved exactly and the average objective
value for all small problem instances is 810.670. We applied the following algorithms:

RCWW (average costs: 812.010). This is the original RCWW algorithm by Dellaert and Jeunet [11].
STVS (average costs: 811.197). ri depends on a randomly chosen R and u; the lot-sizing sequence is chosen at random.
STVS-ACO* (average costs: 811.164). The lot-sizing sequence is determined by using an ACO system with standard

selection rule (13).
STVS-ACO (average costs: 810.938). The summation rule (12) is used.
ASMLLS* (average costs: 810.924). The best R and u are searched systematically by the ants and the standard decision

rule (13) is used.

1 The communality index is the average number of successors for any item except for the end-items. (c = ∑P
i=F+1 �(i)/(P − F) where F is

the number of end-items.)
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Table 3
Summary of total cost of various solution methods for small-sized problems

Method Avg. costs Best Mean dev. if
solutions best solution
found in % not found (%)

LFL 1979.12 0 152.85
BPOM 972.56 19.79 26.14
SWW 879.68 4.17 10.66
CWW 887.03 32.29 14.66
PCWW 887.03 32.29 14.66
RCWW 812.01 71.88 0.78

GA 810.74 96.88 0.26
ASMLLS 810.79 92.71 0.2551

OPTIMUM 810.67 100.0 0.0

Table 4
Summary of total cost of various solution methods for medium-sized problems

Method Avg. costs Best Mean dev. if
solutions best solution
found in % not found (%)

LFL 391,026.8 0 49.60
BPOM 305,753.2 0 16.58
SWW 292,548.7 0 10.55
CWW 280,876.7 0 6.90
PCWW 279,466.4 0 6.34
RCWW 265,561.4 0 0.76

GA 263,931.8 60 0.28
ASMLLS 263,796.3 83 0.24

ASMLLS (average costs: 810.795). The best R and u are searched systematically by the ants and the summation rule
(12) is used.

Detailed results are reported in Table 7, 8 and 9 in the appendix. Furthermore we applied also a Wilcoxon signed-rank
test with a 1% level. Table 6 shows that each extension from RCWW to the final ASMLLS is for medium (m) and
large (l) test instances improves the results significantly. Only for the small problems there is no significant difference
because for many of the test problems all algorithms find the optimal solution. Therefore each modification in the design
has a positive influence in the solution quality. Concerning the selection rule, we have the same effect as it is commonly
observed for scheduling problems: the summation rule (12) works better than the classical rule (13). Therefore we only
use the summation rule for the numerical results. We should also note that we have made some preliminary tests on
a subset of the smaller instances in order to find out which encoding of the pheromone is best. As expected, it turns
out that an encoding of the pheromone matrix for scheduling problems item i on position p proposed by Stützle [19]
performs better than the classical TSP encoding (i, j) i.e. item j immediately follows item i. Therefore, we used the
specific pheromone encoding for scheduling problems in the numerical analysis of Section 4.4.

4.4. Results

We report the average solution quality, the percentage of problems in which the optimal solution (for small-
sized problems) or the best known solution (for medium and large-sized problems) is found, and the percentage
of deviation from the optimal (or best found) solution for the instances where the solution deviates from the best
solution. Each problem instance is solved 5 times and the average results are presented. The results of the small,
medium and large size problems are reported in Tables 3, 4 and 5, respectively. The optimal solutions for
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Table 5
Summary of total cost of various solution methods for large-sized problems

Method Avg. costs Best Mean dev. if
solutions best solution
found in % not found (%)

LFL 48,279,503 0 122.67
BPOM 45,743,203 0 12.11
SWW 42,383,854 0 13.58
CWW 41,179,135 0 7.71
PCWW 40,985,940 0 4.83
RCWW 41,007,946 0 3.31

GA 40,817,600 10 1.37
ASMLLS 40,371,702 90 0.179

Table 6
Statistical tests for significant difference between algorithms

RCWW STVS STVS-ACO ASMLLS* ASMLLS

s m l s m l s m l s m l s m l

GA < < < < < < < = = < = > = = >

RCWW = > > > > > > > > > > >

STVS = > > = > > > > >

STVS-ACO = > > > > >

ASMLLS* = > >

the small-sized problems are taken from Dellaert and Jeunet [13], obtained by GAMS using the zero-one
formulation of the MLLS [26]. We compare our algorithm with the hybrid genetic algorithm developed by Del-
laert and Jeunet [13] and other existing heuristics. The results for these heuristics were taken from Dellaert and
Jeunet:

LFL (lot-for-lot)—the simple lot-for-lot rule.
BPOM (best period order method)—this method is based on the LFL method, but all items are ordered every 	 periods,

unless there are no requirements. BPOM searches for the best 	∗ starting with 	 = 1 (which is equal to LFL) and in
each step increasing 	 by 1.

SWW (sequential WW)—application of the WW in a sequential way without any cost modification.
CWW (cumulative WW)—this is a sequential WW method using modified setup cost. For each item we add to the

setup cost the sum of the setup costs of all its immediate predecessors.
PCWW (partly cumulativeWW)—this method is similar to CWW, but we add only the setup costs of those predecessors

for which no lot is planned so far.
RCWW (randomized cumulative WW)—here we add only a randomized fraction of the setup costs of all unplanned

predecessors (see also Section 3.1 and Dellaert and Jeunet [11]).

For the small problem instances ASMLLS can find the optimal solution for 87 problem instances out of 96 (90.63%).
We applied the algorithm for 100 iterations and the computation time is less than 1 s, which is the same runtime limit
and number of iterations as for the GA. For the problems which cannot be solved to optimality we have the same
deviation as the GA (0.26%).

For the medium-sized problem instances the runs consume less than 20 s CPU time (for 300 iterations) and we can
find the best known solutions (which are in fact new best solutions) for 33 problem instances out of 40 (77.5%). For
7 problem instances the GA finds better solutions and for 17 cases ASMLLS and GA find the same solutions. All 7
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problems, where GA is better, are assembly systems. In assembly systems the production sequence is more restricted
than in general systems which reduces the decision space for the ants. Nevertheless, the deviation for these 7 problems
is very small.

For the large-sized problem instances ASMLLS can find the best solutions in 36 cases out of 40 (90%). In the
remaining 4 problem instances the GA outperforms the ACO algorithm. The mean deviation for these 4 cases is
substantially smaller than the mean deviation of the GA for all the problem instances. The runtime is about 40 min (for
1000 iterations).

We conclude that our algorithm provides superior results in solving the medium-sized and large-sized problems in
comparison to the GA solutions, while for small instances and for serial systems our approach is not better than the
GA. In order to explain this, it is important to note that there is a crucial difference between the two approaches: the GA
uses the Integer Program (IP) formulation as problem representation, i.e., it actually encodes the production periods for
all products. By contrast we employ a two phase approach. In the first phase we construct the sequence of the products
in which they should be lot-sized. For this phase of the algorithm we use ACO. In the second phase we use the STVS
(WW approximation) to determine the lots for each product based on the ordering of the products. It is obvious that
the decisions of the ants are very limited in serial systems, since the production sequence is predetermined through
the product structure. Also for very small problems there are rather few feasible sequences and the ants cannot really
contribute a lot. Consequently, the solution quality of our approach for these types of problems is not quite as good as
the reference GA (which can use the whole solution space, while our approach can just produce a subset of all feasible
solutions). For general product structure and larger problem sizes, however, our two phase approach outperforms the
GA approach.

We verified the results through a statistical analysis where we have tested the following hypotheses using theWilcoxon
Signed Rank Test. Note that the Wilcoxon Signed Rank Test is the non-parametric counterpart of the paired samples
t-test, while the Mann–Whitney U -test is the non-parametric counterpart of the standard t-test.

Hypothesis. Algorithm A outperforms Algorithm B.

H0 : RPDA = RPDB

Ha : RPDA < RPDB

Both hypotheses were tested using one-sided tests and our conclusion will be drawn at a 99% level of confidence.
The results in Table 6 show that ASMLLS is better for large problem instances and that there is no significant difference
for small- and medium-sized test instances.

5. Conclusions and outlook

A simple and efficient way to solve multi-level lot-sizing problems is cost modification. We extend a recent cost
modification approach by Dellaert and Jeunet [11] by

1. optimizing the lot-sizing sequence with ACO,
2. optimizing the correction factors ri for the cost modification for all items over the iterations.

We have shown that this combination of a metaheuristic like an ACO algorithm and a single-level lot-sizing method
like Wagner–Whitin is a powerful approach for solving unconstrained multi-level lot-sizing problems. The ACO algo-
rithm is designed to work on a large search space. If there is a very complex product structure and a high communality
index, then there are many different possibilities to sequence the items for the lot-sizing step. Therefore our algorithm
is better on larger and more complex problems than on smaller ones. The results for such systems are competitive. For
more complex problems, ASMLLS outperforms the best methods developed so far.

Future work will focus on using a similar two step approach for capacity constrained multi-level lot-sizing problems.
Furthermore, it should be noted that the application of ACO to multi-level lot-sizing problems is not restricted to our
indirect two step approach. Just like in the GA by Dellaert and Jeunet [13], one could encode the complete solution in
an ACO algorithm which then directly decides on the production periods for each product.
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Appendix

We now present detailed results on the contributions of the various design decisions to the solution quality. In
Tables 7–9 detailed results of various solution methods for small-sized problems are given.

• Instance No.: denotes the instance number.

Table 7
Detailed results of various solution methods for small-sized problems—1/3

Instance No. Char. (Se/Ho Optimum GA (100 it.) ASMLLS* ASMLLS R u RCWW STVS STVS+ACO* STVS+ACO
/De/Le)

s-1 0/0/1/5 336.55 336.55 337.315 337.315 0.41 −0.52 336.55 337.315 337.315 337.315
s-2 0/0/1/4 580.6 580.6 581.03 580.6 0.19 −0.03 581.03 581.03 581.03 581.03
s-3 0/0/1/3 785.2 785.2 785.2 785.2 0.41 −0.31 785.2 785.2 785.2 785.2
s-4 0/0/1/2 984.5 984.5 984.5 984.5 0.33 0.77 984.5 984.5 984.5 984.5

s-5 0/0/2/5 342.61 342.61 342.96 342.61 0.17 0.34 343.46 345.35 343.36 343.36
s-6 0/0/2/4 592.63 592.63 592.63 592.63 0.33 −0.14 593.68 592.63 592.63 592.63
s-7 0/0/2/3 802.16 802.16 803.2 802.16 0.33 0.30 802.16 810.96 810.96 803.2
s-8 0/0/2/2 1,007.6 1,007.6 1,007.6 1,007.6 0.19 0.61 1,007.6 1,007.6 1,007.6 1,007.6

s-9 0/0/3/5 324.08 324.08 325.831 324.08 0.38 −0.82 324.69 326.831 326.831 326.831
s-10 0/0/3/4 552.76 552.76 552.76 552.76 0.22 −0.43 552.76 552.76 552.76 552.76
s-11 0/0/3/3 748.4 748.4 748.4 748.4 0.25 −0.15 748.4 748.4 748.4 748.4
s-12 0/0/3/2 928.4 928.4 928.4 928.4 0.40 0.73 928.4 928.4 928.4 928.4

s-13 0/0/4/5 344.57 344.57 344.57 344.57 0.46 −0.82 344.57 344.57 344.57 344.57
s-14 0/0/4/4 572.73 572.73 572.73 572.73 0.41 −0.41 572.73 573.883 572.73 572.73
s-15 0/0/4/3 776.16 776.16 776.16 776.16 0.28 −0.11 776.16 776.16 776.16 776.16
s-16 0/0/4/2 964.7 964.7 964.7 964.7 0.19 0.78 964.7 964.7 964.7 964.7

s-17 0/0/5/5 306.18 306.18 307.731 306.18 0.49 −0.15 307.731 307.731 307.731 307.731
s-18 0/0/5/4 523.66 523.66 523.837 523.837 0.09 −0.23 523.84 523.837 523.837 523.837
s-19 0/0/5/3 706.48 706.48 706.48 706.48 0.43 0.66 706.48 706.48 706.48 706.48
s-20 0/0/5/2 875.6 875.6 875.6 875.6 0.35 −0.36 875.6 875.6 875.6 875.6

s-21 0/0/6/5 268.06 268.06 268.06 268.06 0.10 0.45 268.18 268.06 268.06 268.06
s-22 0/0/6/4 452.05 452.05 452.05 452.05 0.29 −0.29 452.05 452.05 452.05 452.05
s-23 0/0/6/3 614.32 614.32 614.32 614.32 0.22 −0.53 614.32 614.32 614.32 614.32
s-24 0/0/6/2 764.5 764.5 764.5 764.5 0.38 0.72 764.5 764.5 764.5 764.5

s-25 0/1/1/5 501.26 501.26 502.26 502.26 0.08 0.10 514.86 502.26 502.26 502.26
s-26 0/1/1/4 759.4 759.4 759.4 759.4 0.01 −0.67 773.4 763.4 763.4 759.4
s-27 0/1/1/3 944.75 944.75 945.3 944.75 0.25 −0.65 953.75 953.75 953.75 945.3
s-28 0/1/1/2 1,115 1,115 1,115 1,115 0.44 −0.86 1,115 1,115 1,115 1,115

s-29 0/2/2/5 501.76 501.76 501.76 501.76 0.36 −0.97 508.76 501.76 501.76 501.76
s-30 0/2/2/4 765.4 765.4 765.4 765.4 0.08 0.10 772.4 765.4 765.4 765.4
s-31 0/2/2/3 956 956 956 956 0.07 −0.52 957 956 956 956
s-32 0/2/2/2 1,122 1,122 1,122 1,122 0.07 −0.52 1,122 1,122 1,122 1,122
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Table 8
Detailed results of various solution methods for small-sized problems—2/3

Instance No. Char. (Se/Ho Optimum GA (100 it.) ASMLLS* ASMLLS R u RCWW STVS STVS+ACO STVS+ACO
/De/Le) Sum. rule

s-33 0/1/3/5 442.6 442.6 445.32 445.32 0.01 0.05 445.32 446.82 446.82 445.32
s-34 0/1/3/4 670.5 670.5 671.3 671.3 0.49 −0.98 671.3 671.3 671.3 671.3
s-35 0/1/3/3 850 850 850 850 0.32 −0.90 850 850 850 850
s-36 0/1/3/2 1,017 1,017 1,017 1,017 0.20 −0.46 1,017 1,017 1,017 1,017

s-37 0/1/4/5 452.1 452.1 452.1 452.1 0.02 0.54 454.1 452.1 452.1 452.1
s-38 0/1/4/4 687 687 687 687 0.02 0.74 687.8 687 687 687
s-39 0/1/4/3 874.75 874.75 874.75 874.75 0.07 −0.82 874.75 874.75 874.75 874.75
s-40 0/1/4/2 1,045 1,045 1,045 1,045 0.02 0.74 1,045 1,045 1,045 1,045

s-41 0/1/5/5 421.08 421.08 425.5 421.28 0.02 0.74 422.68 425.5 425.5 425.5
s-42 0/1/5/4 644.2 644.2 644.2 644.2 0.05 0.09 652.2 644.2 644.2 644.2
s-43 0/1/5/3 810.5 810.5 810.5 810.5 0.07 0.21 810.5 810.5 810.5 810.5
s-44 0/1/5/2 950 950 950 950 0.34 −0.79 950 950 950 950

s-45 0/1/6/5 377.68 377.68 377.68 377.68 0.03 0.02 398.84 377.68 377.68 377.68
s-46 0/1/6/4 571.2 571.2 571.2 571.2 0.06 −0.28 574.6 571.2 571.2 571.2
s-47 0/1/6/3 711.25 711.25 711.25 711.25 0.38 −0.94 716.25 711.25 711.25 711.25
s-48 0/1/6/2 832 832 832 832 0.39 −0.81 832 832 832 832

s-49 1/0/1/5 517.34 517.34 517.34 517.34 0.37 0.94 517.34 517.34 517.34 517.34
s-50 1/0/1/4 724.62 724.62 724.62 724.62 0.24 0.26 724.62 724.62 724.62 724.62
s-51 1/0/1/3 879.6 879.6 879.6 879.6 0.42 −0.28 879.6 879.6 879.6 879.6
s-52 1/0/1/2 1,024.5 1,024.5 1,024.5 1,024.5 0.33 0.24 1,024.5 1,024.5 1,024.5 1,024.5

s-53 1/0/2/5 525.39 525.39 525.39 525.39 0.23 0.11 525.39 525.39 525.39 525.39
s-54 1/0/2/4 739.26 739.26 739.26 739.26 0.43 0.22 739.26 739.26 739.26 739.26
s-55 1/0/2/3 898.96 898.96 898.96 898.96 0.31 0.50 898.96 898.96 898.96 898.96
s-56 1/0/2/2 1,048.7 1,048.7 1,048.7 1,048.7 0.48 0.62 1,048.7 1,048.7 1,048.7 1,048.7

s-57 1/0/3/5 507.83 507.83 507.83 507.83 0.46 −0.49 507.83 507.83 507.83 507.83
s-58 1/0/3/4 707.32 707.32 707.32 707.32 0.31 0.50 707.32 707.32 707.32 707.32
s-59 1/0/3/3 856.72 856.72 856.72 856.72 0.24 0.38 856.72 856.72 856.72 856.72
s-60 1/0/3/2 988.4 988.4 988.4 988.4 0.47 0.12 988.4 988.4 988.4 988.4

s-61 1/0/4/5 535.28 535.28 535.28 535.28 0.34 0.94 535.28 535.28 535.28 535.28
s-62 1/0/4/4 757.23 757.23 757.23 757.23 0.47 0.24 757.23 757.23 757.23 757.23
s-63 1/0/4/3 909.76 909.76 909.76 909.76 0.37 0.67 909.76 909.76 909.76 909.76
s-64 1/0/4/2 1,024.7 1,024.7 1,024.7 1,024.7 0.22 0.04 1,024.7 1,024.7 1,024.7 1,024.7

• Char. (Se/Ho/De/St): problem characteristic:

◦ Se = set-up costs (0-low cost, 1-high cost).
◦ Ho = holding costs (0 - low cost, 1 - high cost).
◦ De = demand pattern (6 different patterns).
◦ Le = number of levels in the product structure(5 levels = serial structure).

• Optimum: in this column the optimum solution is reported.
• GA: in this column the solution of the genetic algorithm is reported after 100 iterations.
• ASMLLS*: in this column the solution quality of the ACO algorithm with decision rule (13) is reported.
• ASMLLS: in this column the solution quality of the ACO algorithm with decision rule (12) is reported.
• R: R-value for the best solution found with ASMLLS.
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Table 9
Detailed results of various solution methods for small-sized problems—3/3

Instance No. Char. (Se/Ho Optimum GA (100 it.) ASMLLS* ASMLLS R u RCWW STVS STVS+ACO STVS+ACO
/De/Le) Sum. rule

s-65 1/0/5/5 488.43 488.43 488.43 488.43 0.22 0.26 488.43 488.43 488.43 488.43
s-66 1/0/5/4 672.05 672.05 672.05 672.05 0.21 0.79 672.05 672.05 672.05 672.05
s-67 1/0/5/3 810.08 810.08 810.08 810.08 0.47 0.55 810.08 810.08 810.08 810.08
s-68 1/0/5/2 935.6 935.6 935.6 935.6 0.15 0.41 935.6 935.6 935.6 935.6

s-69 1/0/6/5 444.14 444.14 444.14 444.14 0.46 −0.08 444.14 444.14 444.14 444.14
s-70 1/0/6/4 591.52 591.52 591.52 591.52 0.26 0.21 591.52 591.52 591.52 591.52
s-71 1/0/6/3 703.6 703.6 703.6 703.6 0.29 0.53 703.6 703.6 703.6 703.6
s-72 1/0/6/2 804.5 804.5 804.5 804.5 0.38 0.77 804.5 804.5 804.5 804.5

s-73 1/1/1/5 1,172 1,172 1,174.5 1,172 0.23 −0.37 1,177.36 1,174.5 1,174.5 1,174.5
s-74 1/1/1/4 1,318 1,318 1,318 1,318 0.13 −0.47 1,318 1,318 1,318 1,318
s-75 1/1/1/3 1,269 1,269 1,269 1,269 0.12 −0.21 1,274.5 1,269 1,269 1,269
s-76 1/1/1/2 1,250 1,250 1,250 1,250 0.36 −0.73 1,250 1,250 1,250 1,250

s-77 1/1/2/5 1,153.52 1,159.52 1,159.8 1,159.8 0.12 −0.01 1,160.52 1,159.8 1,159.8 1,159.8
s-78 1/1/2/4 1,302.4 1,302.4 1,302.4 1,302.4 0.05 −0.11 1,302.4 1,302.4 1,302.4 1,302.4
s-79 1/1/2/3 1,257.5 1,257.5 1,257.5 1,257.5 0.23 −0.59 1,257.5 1,257.5 1,257.5 1,257.5
s-80 1/1/2/2 1,262 1,262 1,262 1,262 0.18 −0.71 1,262 1,262 1,262 1,262

s-81 1/1/3/5 984.92 984.92 984.92 984.92 0.03 −0.81 984.92 984.92 984.92 984.92
s-82 1/1/3/4 1,131.4 1,131.4 1,131.4 1,131.4 0.08 −0.33 1,131.4 1,131.4 1,131.4 1,131.4
s-83 1/1/3/3 1,121.25 1,121.25 1,121.25 1,121.25 0.43 −0.75 1,121.25 1,121.25 1,121.25 1,121.25
s-84 1/1/3/2 1,129 1,129 1129 1,129 0.25 −0.52 1,129 1,129 1,129 1,129

s-85 1/1/4/5 1,001.44 1,001.44 1,001.44 1,001.44 0.07 −0.44 1,005.44 1,001.44 1,001.44 1,001.44
s-86 1/1/4/4 1,146.8 1,146.8 1,146.8 1,146.8 0.24 −0.78 1,150.8 1,146.8 1,146.8 1,146.8
s-87 1/1/4/3 1,149.5 1,149.5 1,149.5 1,149.5 0.41 −0.75 1,149.5 1,149.5 1,149.5 1,149.5
s-88 1/1/4/2 1,162 1,162 1,162 1,162 0.17 −0.07 1,162 1,162 1,162 1162

s-89 1/1/5/5 932.96 932.96 932.96 932.96 0.33 −0.76 932.96 932.96 932.96 932.96
s-90 1/1/5/4 1,061.2 1,061.2 1,061.2 1,061.2 0.27 −0.94 1,063.6 1,061.2 1,061.2 1,061.2
s-91 1/1/5/3 1,049.5 1,049.5 1,049.5 1,049.5 0.02 −0.39 1,049.5 1,049.5 1,049.5 1,049.5
s-92 1/1/5/2 1,070 1,070 1,070 1,070 0.14 −0.91 1,070 1,070 1,070 1,070

s-93 1/1/6/5 826.88 826.88 826.88 826.88 0.27 −0.59 826.88 826.88 826.88 826.88
s-94 1/1/6/4 941.6 941.6 941.6 941.6 0.04 −0.12 941.6 941.6 941.6 941.6
s-95 1/1/6/3 927 927 927 927 0.25 −0.64 927 927 927 927
s-96 1/1/6/2 932 932 932 932 0.21 −0.88 932 932 932 932

810.670 810.733 810.924 810.795 812.010 811.197 811.164 810.938

• u: u-value for the best solution found with ASMLLS.
• RCWW: in this column the results of the RCWW are reported (see Section 3.1)
• STVS: in this column the results of the RCWW and the STVS are reported (see Section 3.2)
• STVS+ACO*: in this column the results of the RCWW with STVS by using ACO are reported (see Section 3.3)
• STVS+ACO: in this column results are reported when the standard ACO is replaced by the ACO with the summation

rule (see Formula 12).

In Table 10 detailed results for medium-sized problems are reported. Here we have problems with 10 different sets
of parameter combinations (Pa) and 4 different product structures (St). The different structures are

1. assembly structure with 9 levels
2. assembly structure with 16 levels
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Table 10
Detailed results of various solution methods for medium-sized problems

Instance Char. GA (250 it.) ASMLLS Mean ASMLLS dev. Mean GA dev. R u

No. St/Pa if best solution if best solution
not found % not found %

m-1 1 / 1 196,323.6 196,262.0 0.0314 0.42 −0.69
m-2 2 / 1 179,761.5 179,761.5 0.48 0.64
m-3 1 / 2 166,165.3 166,268.0 0.0618 0.27 −0.79
m-4 2 / 2 155,948.0 155,960.0 0.0077 0.47 −0.24
m-5 1 / 3 201,230.9 201,229.4 0.0007 0.21 −0.15
m-6 2 / 3 183,219.1 183,219.1 0.28 0.82
m-7 1 / 4 188,010.3 188,560.0 0.2924 0.40 −0.83
m-8 2 / 4 136,669.3 136,669.3 0.37 −0.27
m-9 1 / 5 161,561.4 161,561.4 0.40 −0.21
m-10 2 / 5 187,042.1 187,042.1 0.37 −0.53
m-11 1 / 6 344,932.3 344,422.0 0.1482 0.46 −0.02
m-12 2 / 6 341,215.9 341,137.0 0.0231 0.33 −0.08
m-13 1 / 7 292,908.3 292,908.3 0.29 0.73
m-14 2 / 7 378,845.1 379,860.0 0.2679 0.40 0.13
m-15 1 / 8 355,111.4 355,520.5 0.1152 0.16 0.63
m-16 2 / 8 347,327.9 347,327.9 0.42 −0.41
m-17 1 / 9 325,606.6 325,606.6 0.23 0.56
m-18 2 / 9 412,654.9 413,859.0 0.2918 0.28 0.86
m-19 1 / 10 386,082.4 386,082.4 0.22 0.68
m-20 2 / 10 392,010.5 394,665.0 0.6772 0.28 0.31
m-21 3 / 1 148,126.1 148,069.0 0.0386 0.44 0.84
m-22 4 / 1 187,286.0 185,580.0 0.9193 0.22 0.80
m-23 3 / 2 198,067.4 198,059.0 0.0042 0.29 0.36
m-24 4 / 2 186,033.5 186,033.5 0.44 0.31
m-25 3 / 3 160,924.9 160,693.0 0.1443 0.43 −0.74
m-26 4 / 3 194,278.8 192,157.0 1.1042 0.39 −0.49
m-27 3 / 4 184,759.6 184,410.0 0.1896 0.27 0.30
m-28 4 / 4 137,533.7 137,533.7 0.39 −0.58
m-29 3 / 5 161,471.0 161,465.0 0.0037 0.24 0.68
m-30 4 / 5 166,379.8 166,379.8 0.47 −0.17
m-31 3 / 6 344,969.7 344,969.7 0.36 0.76
m-32 4 / 6 291,141.2 290,942.0 0.0685 0.43 −0.29
m-33 3 / 7 353,789.2 352,648.0 0.3236 0.45 0.33
m-34 4 / 7 341,769.5 337,913.0 1.1413 0.42 −0.29
m-35 3 / 8 357,580.9 356,739.0 0.2360 0.20 0.82
m-36 4 / 8 322,504.6 322,504.6 0.47 −0.22
m-37 3 / 9 411,707.3 411,509.0 0.0482 0.47 0.13
m-38 4 / 9 368,276.8 368,276.8 0.40 −0.55
m-39 3 / 10 401,732.2 401,732.2 0.48 0.50
m-40 4 / 10 306,314.9 306,314.9 0.14 0.68

263,931.9 263,796.3 0.2449 0.2766

3. general structure with a commonality index (average number of successors) of 1.39
4. general structure with a commonality index (average number of successors) of 1.18

We report also the percentage deviation of the solution quality from the comparing method if the best solution was not
found.

InTable 11 detailed results for large-sized problems are reported. Here we have problems with 4 different commonality
indeces (Co) and 5 different levels of the product structures (Le). We report also the percentage deviation of the solution
quality from the comparing method if the best solution was not found.
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Table 11
Detailed results of various solution methods for large-sized problems

Instance Char. GA (1000 it.) ASMLLS Mean ASMLLS dev. Mean GA dev. R u
No. Co/Le if best solution if best solution

not found % not found %

l-1 1 / 5 597,560.1 596,796 0.1280 0.41 0.59
l-2 1 / 7 816,057.9 816,270 0.0260 0.46 −0.32
l-3 1 / 9 930,129.6 929,810 0.0344 0.43 0.62
l-4 1 / 13 943,802.8 942,650 0.1223 0.23 0.31
l-5 1 / 18 1,149,008.8 1,149,005 0.0003 0.23 0.10

l-6 1.6 / 5 8,232,914 8,226,990 0.0720 0.35 0.14
l-7 1.6 / 7 4,272,970 4,063,248 5.1614 0.27 0.04
l-8 1.6 / 9 2,704,332 2,713,095 0.3240 0.44 0.54
l-9 1.6 / 13 2,019,829.5 1,987,120 1.6461 0.18 0.27
l-10 1.6 / 18 1,561,600 1,560,030 0.1006 0.28 0.18

l-11 2.2 / 5 63,024,352 60,255,600 4.5950 0.35 0.49
l-12 2.2 / 7 14,363,085 14,237,100 0.8849 0.18 0.67
l-13 2.2 / 9 4,990,925.3 4,867,810 2.5292 0.20 0.31
l-14 2.2 / 13 2,910,203 2,920,056 0.3386 0.21 0.13
l-15 2.2 / 18 1,835,948 1,791,700 2.4696 0.17 −0.61

l-16 2.8 / 5 477,990,576 474,608,000 0.7127 0.35 0.01
l-17 2.8 / 7 18,759,589.1 18,750,600 0.0479 0.48 −0.62
l-18 2.8 / 9 7,602,969 7,602,730 0.0031 0.17 0.20
l-19 2.8 / 13 3,825,972 3,737,590 2.3647 0.14 0.50
l-20 2.8 / 18 2,367,030 2,358,460 0.3634 0.31 −0.64

l-21 1 / 5 1,187,241 1,187,090 0.0127 0.40 0.49
l-22 1 / 7 1,341,584 1,341,980 0.0295 0.49 0.58
l-23 1 / 9 1,409,284 1,400,480 0.6286 0.28 0.18
l-24 1 / 13 1,383,129 1,382,150 0.0708 0.27 0.11
l-25 1 / 18 1,660,995 1,660,860 0.0081 0.26 0.34

l-26 1.6 / 5 14,244,362 13,366,200 6.5700 0.26 0.28
l-27 1.6 / 7 8,173,013.5 7,671,040 6.5437 0.29 −0.49
l-28 1.6 / 9 4,363,448.6 4,326,410 0.8561 0.33 0.43
l-29 1.6 / 13 3,053,589.4 2,996,500 1.9052 0.27 −0.38
l-30 1.6 / 18 2,282,597 2,277,630 0.2181 0.25 0.46

l-31 2.2 / 5 105,233,016 103,581,000 1.5949 0.38 0.86
l-32 2.2 / 7 19,401,592 19,063,100 1.7756 0.39 0.73
l-33 2.2 / 9 7,416,366 7,361,610 0.7438 0.32 −0.34
l-34 2.2 / 13 4,350,512 4,320,570 0.6930 0.15 0.60
l-35 2.2 / 18 2,674,830 2,672,210 0.0980 0.12 0.75

l-36 2.8 / 5 779,783,213 772,761,000 0.9087 0.45 −0.38
l-37 2.8 / 7 33,684,858 33,524,300 0.4789 0.19 0.11
l-38 2.8 / 9 10,928,819 10,745,900 1.7022 0.26 0.10
l-39 2.8 / 13 5,628,807 5,627,990 0.0145 0.43 0.19
l-40 2.8 / 18 3,603,889.6 3,485,380 3.4002 0.18 0.30

40,817,600 40,371,702 0.1795 1.3739
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