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Abstract 
Nonlinear dynamical analysis techniques have 

been widely used for EEG analysis. The correlation 
dimension based upon the correlation is one of the 
most commonly used measures which quantifies the 
active degrees of freedom or the complexity of the 
dynamical system on the attractor. This article aims 
to provide an overview of the basic concepts of 
nonlinear dynamical analysis, and also to 
demonstrate its application in EEG sleep analysis. 
As one of the evidences, it is shown that there is a 
decrease in the correlation dimension (i.e., a loss in 
the complexity of the underlying dynamics of the 
neuronal networks in the brain) from lighter to 
deeper sleep stages. The use of the nonlinear 
dynamical analysis can be viewed in two aspects. In 
one aspect, the lower correlation dimension of the 
EEG suggests that the neuronal networks are more 
strongly coupled at deeper sleep stage. In another 
aspect, the substantial differences of the correlation 
dimensions of the EEG associated with various 
sleep stages can be used for sleep stage 
discrimination.  
Keywords: Nonlinear dynamics, complexity, 
correlation dimension, electroencephalogram, sleep 

 
1. Introduction 

The electroencephalogram (EEG) or brain wave 
is a complex signal that quantifies the electrical 
activity of the brain. The EEG which results from 
postsynaptic potentials of cortical pyramidal cells is 
an important brain state indicator [1]. Temporal 

patterns of the EEG have been shown to provide 
insight into the various functional states of neuronal 
networks in the brain [2]. Computational analysis 
techniques have been applied to EEG for a number 
of clinical situations including sleep, coma, mental 
state, cognition, and epilepsy.  

Sleep is essential for human's health and well-
being. There are many sleep disorders (e.g., 
insomnia, narcolepsy, sleep apnoea) while many 
other disorders manifest themselves through sleep 
disturbances (e.g., depression, schizophrenia, 
Alzheimer disease) [3]. Sleep staging is one of 
important procedures for clinical diagnosis and 
treatment of sleep disorder [4]. Traditionally sleep is 
monitored using a polysomnography [5]. Sleep 
stages are mainly differentiated by features and 
patterns of brain wave, eye movements, and muscle 
tone [6].  

The EEG is the major discriminating marker 
between waking and sleep, and between various 
sleep stages such as between NREM sleep and 
REM sleep, the two major states of sleep [7]. 
According to the standard guidelines for sleep 
classification by Rechtschaffen and Kales [8] which 
is a widely accepted standard, sleep recordings are 
divided into seven discrete stages: waking, stage 1, 
stage 2, stage 3, stage 4, stage REM, and 
movement time based on the characteristic features 
of EEG, in conjunction with EOG and EMG. 
Additional clinical information including heart rate, 
blood pressure, blood oxygenation, and respiration 
rate may be also used in sleep stage classification.  
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Traditional linear analysis techniques, e.g., 
spectral analysis, have been very valuable 
computational tools for EEG analysis. Furthermore, 
the spectral analysis, a mathematical approach that 
decomposes the signal (such as the EEG) into its 
constituting frequency components, has long served 
as a main computational tool especially for the study 
of sleep and EEG sleep analysis because the 
patterns of brain electrical activity, i.e., EEG, 
corresponding to various stages of sleep are 
generally defined in terms of frequency ranges or 
the so-called waves, e.g., delta, theta, beta, and 
alpha.  

Recently, concepts and computational tools 
derived from the contemporary study of complex 
systems including nonlinear dynamics, also known 
as chaos theory, and fractals have gained increasing 
interest in biology and medicine [9]. One reason is 
that many complex and interesting phenomena in 
nature are due to nonlinear phenomena. The theory 
of nonlinear dynamics has been further developed 
and progressed to a point where it has been applied 
to examine self-organization and pattern formation in 
the complex neuronal networks of the brain [10].  

Nonlinear dynamical analysis has been applied 
to various types of EEG including data obtained from 
both normal and abnormal clinical situations [2]. A 
number of clinical situations that nonlinear dynamical 
analysis has been used including resting state, 
sleep, coma, mental state, cognition, and epilepsy. 
In general, nonlinear dynamical analysis has been 
used to characterize behaviors of the underlying 
neuronal dynamics of the brain associated with 
different brain states. A number of nonlinear 
dynamics measures have been also developed to 
quantify features of brain dynamics [10].  

Among the available methods of nonlinear 
dynamical analysis, the correlation dimension 
introduced by Grassberger and Procaccia [11-12] is 
the most commonly used measure and the algorithm 

to compute the correlation dimension is relatively 
simple. However, the computational time required 
can be prohibitive. In addition, the proper 
computation and interpretation of the correlation 
dimension involves many pitfalls. The estimate of 
correlation dimension can be biased by 
autocorrelation effects, noise, and length of the time 
series.  

One of the first applications of nonlinear 
dynamical analysis of the human EEG was the work 
by Babloyantz et al. [13] where the correlation 
dimension was computed using the Grassberger-
Procaccia algorithm [11-12] and the relationship 
between correlation dimension and different stages 
of sleep was investigated. Thereafter sleep has 
become a major research focus in nonlinear 
dynamics [14]. Several similar studies (e.g. [15-19]), 
were carried out using the correlation dimension and 
Lyapunov exponents.  

The main purposes of this article are 1) to 
provide an overview of the basic concepts of 
nonlinear dynamical analysis with an illustration, and 
2) to demonstrate the application of the nonlinear 
dynamical analysis in EEG sleep analysis.  

  
2. Sleep 
2.1 Characteristics of Sleep and Sleep 

Classification 
In normal adults, sleep is divided into two 

broad types: rapid eye movement (REM) and non-
rapid eye movement (NREM) [6]. These two types of 
sleep, i.e., REM and NREM, alternate cyclically 
throughout the night. NREM sleep is further divided 
into four stages, namely stage 1, stage 2, stage 3 
and stage 4, that are roughly correlated with the 
depth of sleep [6]. Sleep stages 1 and 2 correspond 
to light sleep whereas sleep stages 3 and 4 
correspond to deep sleep or also referred to as 
slow-wave sleep (SWS) [20]. Sleep begins in NREM 

sleep and progresses from light NREM sleep stage 
through deeper NREM sleep stages before the first 
episode of REM sleep [21]. REM sleep episodes 
become longer as sleep progresses [6].  

The standard guidelines developed by 
Rechtschaffen and Kales [8] have been widely 
accepted standard for describing the human sleep 
process for approximately 40 years [22]. 
Polysomnographic recordings are divided into 30-
second epochs. The occurrence, frequency, 
amplitude, shape, and temporal sequence of these 
patterns provide information on the sleep stage 
assigned to a given epoch [23]. On the basis of the 
R&K rules, the sleep physiological recordings are 
divided into 7 discrete stages: waking (W), stage 1 
(S1), stage 2 (S2), stage 3 (S3), stage 4 (S4), rapid 
eye movement (REM), and movement time (M) [22].  

The R&K rules have been criticized for leaving 
plenty of room for subjective interpretation, which 
leads to a great variability in the visual evaluation of 
sleep stages [22],[24]. In addition, another significant 
drawback is that the R&K rules were developed for 
young healthy adults, and do not necessarily directly 
apply to elderly subjects and patients [22]. The 
American Academy of Sleep Medicine (AASM) [25] 
revised the standard guidelines for sleep 
classification by Rechtschaffen and Kales [8], and in 
2007, the AASM Manual for the Scoring of Sleep 
and Associated Events: Rules, Terminology, and 
Technical Specifications was published [26].  

The new sleep scoring manual addresses 
seven topics: digital analysis and reporting 
parameters, visual scoring, arousal, cardiac and 
respiratory events, movements and pediatric scoring 
[22]. One of the major changes is a change in 
terminology [N6]. In the AASM manual, the number 
of stages is reduced from seven (W, S1, S2, S3, S4, 
REM and M) to five (W, N1, N2, N3, R) [26]. The 
stage N3 reflects slow-wave sleep (SWS) and 
comprises the sleep stages S3 and S4 [22],[26]. The 

stage REM is referred to as the stage R [22] while 
the movement time is not scored as a separate 
stage [26].  

Staging of sleep is relevant to the study of 
sleep and crucial to the diagnosis of sleep disorders. 
Sleep disorders can be generally divided into two 
major kinds: insomnia (complaints of too little sleep) 
and hypersomnia (complaints of too much sleep) 
[23]. Both the total sleep time and the relative 
amount of time spent in different stages of the sleep 
are often affected by disease processes [20]. Sleep 
stage of narcoleptics goes directly into REM sleep 
rather than going through other sleep stages [23]. 
Moreover, each stage the sleep has characteristic 
impact on respiration [20]. 
2.2  Sleep Stage Classifications 

According to the R&K rules, sleep stages are 
discriminated using three physiological recordings: 
EEG, EOG and EMG [23]. The characteristics and 
patterns of EEG change remarkably corresponding 
to different states of the brain including between 
wakefulness and sleep, and also between different 
levels of sleep [27]. The characteristics and patterns 
of the EEG and other physiological recordings 
associated with various sleep stages are 
summarized as follows [6],[8],[27],[28]  

- Waking: EEG of wakefulness is low voltage 
and contains mixed frequency (2-7 Hz) activity. 50% 
of the epoch consists of alpha (8-13 Hz) activity. 
There is relatively high tonic EMG activity.  

- Stage 1: EEG is relatively low voltage and 
contains mixed frequency (2-7 Hz) activity, which is 
similar to that of wakefulness. The EMG level is 
lower than in wakefulness. Alpha activity occupies 
less than 50% of the epoch.  

- Stage 2: There is an appearance of sleep 
spindles (episodic generalized symmetrical 
complexes) and/or K-complexes (sharp transients 
characterized by an initial negative and then positive 
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nonlinear dynamical analysis with an illustration, and 
2) to demonstrate the application of the nonlinear 
dynamical analysis in EEG sleep analysis.  

  
2. Sleep 
2.1 Characteristics of Sleep and Sleep 

Classification 
In normal adults, sleep is divided into two 

broad types: rapid eye movement (REM) and non-
rapid eye movement (NREM) [6]. These two types of 
sleep, i.e., REM and NREM, alternate cyclically 
throughout the night. NREM sleep is further divided 
into four stages, namely stage 1, stage 2, stage 3 
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become longer as sleep progresses [6].  

The standard guidelines developed by 
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REM and M) to five (W, N1, N2, N3, R) [26]. The 
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stage REM is referred to as the stage R [22] while 
the movement time is not scored as a separate 
stage [26].  

Staging of sleep is relevant to the study of 
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Sleep disorders can be generally divided into two 
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[23]. Both the total sleep time and the relative 
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are often affected by disease processes [20]. Sleep 
stage of narcoleptics goes directly into REM sleep 
rather than going through other sleep stages [23]. 
Moreover, each stage the sleep has characteristic 
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to different states of the brain including between 
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associated with various sleep stages are 
summarized as follows [6],[8],[27],[28]  

- Waking: EEG of wakefulness is low voltage 
and contains mixed frequency (2-7 Hz) activity. 50% 
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component) which must last more than 0.5 second. 
The epoch may contain high voltage (greater than 
75 V) and low frequency 2 Hz or less) activity of 
EEG for more than 20%.  

- Stage 3: EEG is high voltage (greater than 75 
V) and contains low frequency (2 Hz or less) 
activity for about 20%-50% of the epoch.  

- Stage 4: The epoch consists of high voltage 
(greater than 75 V) and similar low frequency 
(delta activity) EEG for more than 50%.  

- REM: EEG is relatively low voltage and 
contains mixed frequency (2-7 Hz) along with 
episodic rapid eye movements and absent or 
reduced chin EMG activity.  

- Movement time: If it is ambiguous to score as 
sleep or waking for more than a half of the epoch, 
then the epoch is scored as movement time.  

Since the presentation of the standard 
guidelines for sleep classification by Rechtschaffen 
and Kales [8], a number of computer-assisted sleep 
stage classification and identification techniques 
have been presented [29-32].  

 
3. Concepts of Nonlinear Dynamics 

The information obtained from the nonlinear 
dynamical analysis is mostly reflected by the 
complexity parameter which is associated to the 
dimensionality of the underlying dynamics of the 
system [33].  
3.1 Dynamical Systems 

A dynamical system is a system whose state 
develops and evolves over the course of time. 
Mathematically, a dynamical system is given by a 
model that expresses the evolution of such system 
given only by a current state. That is, the next state 
of a dynamical system is specified by a particular 
function of the current state. Therefore, a dynamical 
system consists of two parts: a state and a 
dynamics. The state of a dynamical system is a set 

of values of all dependent variables that describe the 
system at a particular moment in time while the 
dynamics of a dynamical system is a set of rules or 
equations that describe how the state of the system 
evolves over time.  

The state of a dynamical system described by 
m  dependent variables is represented by a point in 
m -dimensional space. This space is a vector space 
called the state space or also called the phase 
space m , and m  characterizes the degrees of 
freedom. The state of a dynamical system is formally 
represented by a state vector mx  
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The dynamics of a dynamical system can be 
described by a set of ordinary differential equations, 
typically the first-order differential equations, or a 
mapping function. For a continuous-time dynamical 
system, the dynamics of the system can be 
described by a set of ordinary differential equations  
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On the other hand, the dynamics of a discrete-time 
dynamical system is represented by a mapping 
function 
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A dynamical system is linear if the equations that 
describe the dynamics are linear; nonlinear, 
otherwise. A sequence of consecutive states x  in 
the state space forms the trajectory of the dynamical 
system which corresponds to the dynamical 
evolution of the system.  
3.2 Attractors and Characterization of Attractors 

If a dissipative dynamical system is observed 
for a sufficiently long time (after transient behavior 

has died out), its trajectory will converge to a 
confined subspace of the state space. This 
subspace is a geometrical object in the state space 
that is referred to as an attractor. It is called attractor 
because it attracts trajectories from all possible initial 
conditions. There are various structures of attractors 
can exist. Three main types of attractors are point 
attractors, regular attractors, and strange attractors 
(or chaotic attractors). Strange attractors exhibit 
complex geometrical objects in the state space that 
are called fractal geometry.  

Attractors hold significant information with 
respect to the dynamics of dynamical systems. For a 
deeper understanding of behaviors of dynamical 
systems, knowledge of characteristics of attractors is 
desired. Measures derived in theory of dynamical 
systems are used to characterize and quantitatively 
describe the dynamical and geometrical properties of 
attractors. The more complex the attractor, the more 
complex the corresponding dynamics [10].  

Dimensions specify how the attractor which is a 
geometrical object tends to be distributed spatially in 
the state space measure the geometry of the 
attractor [34]. Estimation of dimension is one 
approach to detect and quantify the self-
organizational characteristics of complex systems 
[35]. The correlation dimension 2D  introduced by 
Grassberger and Procaccia [11-12] is the most 
commonly used measure [10].  

 
4. Nonlinear Dynamical Analysis 

In practice, when we analyze a nonlinear 
dynamical system, what we have to begin with are 
not the dynamics of the system (a set of differential 
equations, for example); but rather a set of 
observations that may or may not be any actual 
variables of the system. We therefore do not know a 
complete description of the underlying dynamics of 
the system and even the variables that involves the 

state of the system. The way to obtain a more 
complete description of the underlying dynamics of 
the system with unknown properties from the 
observations is nonlinear dynamical analysis [10].  

The process of nonlinear dynamical analysis 
consists of two steps: 1) reconstruction of the 
dynamics of the system; and 2) characterization of 
the reconstructed attractor. In addition, the validity of 
the nonlinearity of the observations may be further 
tested using the method of surrogate data testing.  
4.1 Attractor Reconstruction 

The main problem in putting the nonlinear 
dynamical analysis into practice is that the 
measurements of variables of the system. Some 
variables of the systems may not be known. Some 
variables of the system cannot be measured or 
accessed. The true state of the system which 
requires the knowledge of all variables of the system 
cannot thus be determined. The method of time-
delay embedding allows us to obtain a more 
comprehensive description of the dynamics and the 
states of the system by unfolding the observed time 
series into a higher dimensional state space, called 
the embedding space.  

Let  x n  be a one-dimensional (observed) 
measure of the dynamical system. Note that the 
dynamical system of our interest is neuronal 
networks and a set of observations we can assess is 
recordings of EEGs. The m -dimensional embedding 
vector of the time series  x n  is given by [34] 
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where m  and   are the embedding parameters 
denoting the embedding dimension and the delay 
time, respectively. A sequence of embedding vector 

nx  forms the reconstructed attractor. It is 
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component) which must last more than 0.5 second. 
The epoch may contain high voltage (greater than 
75 V) and low frequency 2 Hz or less) activity of 
EEG for more than 20%.  

- Stage 3: EEG is high voltage (greater than 75 
V) and contains low frequency (2 Hz or less) 
activity for about 20%-50% of the epoch.  

- Stage 4: The epoch consists of high voltage 
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stage classification and identification techniques 
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The dynamics of a dynamical system can be 
described by a set of ordinary differential equations, 
typically the first-order differential equations, or a 
mapping function. For a continuous-time dynamical 
system, the dynamics of the system can be 
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dynamical system is represented by a mapping 
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A dynamical system is linear if the equations that 
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where m  and   are the embedding parameters 
denoting the embedding dimension and the delay 
time, respectively. A sequence of embedding vector 

nx  forms the reconstructed attractor. It is 
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 proved that the reconstructed attractor has the 
same dynamical properties as the actual attractor by 
Takens [36].  

The choice of the embedding dimension m  
and the delay time   has an effect on accuracy of 
estimation of the correlation dimension. The 
important parameter for time-delay embedding is 
neither the embedding dimension m  nor the delay 
time   separately but the embedding window [37]. 
There are a number of methods for determining the 
time delay   such as the autocorrelation function 
[37], mutual information [38], average displacement 
[39], etc. A sufficient embedding dimension m  can 
be determined by using the false nearest neighbor 
technique [40], for example.  
4.2 Correlation Integral and Dimension 

The correlation dimension 2D  computed using 
the Grassberger-Procaccia algorithm is the easiest 
dimension to compute [41], although the 
computational time required can be prohibitive. The 
correlation dimension is based upon the correlation 
integral. The correlation integral  C r  computed 
from the reconstructed attractor nx  is defined by 
[11-12]  
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where N  denotes the length of the reconstructed 
attractor,  1cN N N   and the Heaviside function 
  1n   if 0n  ; 0  otherwise. The correlation 

integral is thus a measure of the probability that 
pairwise distances of points on the attractor in the 
state space is less than or equal to a specific 
distance r . A revised algorithm was introduced by 
Theiler [35],[42] to correct for autocorrelation effects 
in the time series by adding a new parameter called 
the Theiler window w .  

According to Grassberger and Procaccia [11-
12], the correlation integral  C r  behaves as a 
power of   for small distances r , that is,  
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The exponent   is defined as the correlation 
dimension 2D . The correlation dimension can be 
estimated from the local slope of the log - log  plot, 
i.e.,  
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Fig. 1  Time series for the state variables  x n  and  y n  of the Hénon map. 

The correlation dimension quantifies the active 
degrees of freedom or the complexity of the 
dynamical system on the attractor.  
4.3 Example of Nonlinear Dynamical Analysis 

Consider a discrete nonlinear dynamical system 
known as Hénon map [43]:  
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where 1.4   and 0.3  . Fig. 1 illustrates the 
time series for the state variables of the dynamical 
system, i.e.,  x n  and  y n . The Hénon attractor 
which is formed by a trajectory of state vector 
    T,x n y n  is shown in Fig. 2(a). This is a 

strange attractor where its dynamics never repeats 
the same state.  

If only the state variable x  of the system is 
observed, a more comprehensive description of the 

Fig. 2  Hénon map: (a) the actual attractor and (b) the reconstructed attractor. 

 (a) (b) 

Fig. 3  The plot of the logarithm of correlation integral  C r  versus the logarithm of distance r . 
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 proved that the reconstructed attractor has the 
same dynamical properties as the actual attractor by 
Takens [36].  

The choice of the embedding dimension m  
and the delay time   has an effect on accuracy of 
estimation of the correlation dimension. The 
important parameter for time-delay embedding is 
neither the embedding dimension m  nor the delay 
time   separately but the embedding window [37]. 
There are a number of methods for determining the 
time delay   such as the autocorrelation function 
[37], mutual information [38], average displacement 
[39], etc. A sufficient embedding dimension m  can 
be determined by using the false nearest neighbor 
technique [40], for example.  
4.2 Correlation Integral and Dimension 
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the Grassberger-Procaccia algorithm is the easiest 
dimension to compute [41], although the 
computational time required can be prohibitive. The 
correlation dimension is based upon the correlation 
integral. The correlation integral  C r  computed 
from the reconstructed attractor nx  is defined by 
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where N  denotes the length of the reconstructed 
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Theiler [35],[42] to correct for autocorrelation effects 
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dynamics and the states of the system can be 
obtained by unfolding a time series of  x n  into a 
higher dimensional state space. Fig. 2(b) illustrates 
the reconstructed attractor that is obtained using the 
method of time-delay embedding with the 
embedding dimension 2m   and the delay time 

1  . Clearly, the reconstructed attractor shown in 
Fig. 2(b) provides the same dynamical properties on 
the state space as the Hénon attractor shown in Fig. 
2(a).  

A plot of the logarithm of correlation integral 
 C r  computed using the Grassberger-Procaccia 

algorithm versus the logarithm of distance r  is 
shown as a solid line in Fig. 3. The log - log  plot 
shown in Fig. 3 manifests a linear relationship 
between   log C r  and  log r  for small 
distances r . The correlation dimension is thus 
estimated from the local slope of the log - log  plot. 
A dashed line plotted in Fig. 3 shows a straight line 
with a slope as the correlation dimension. The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
correlation dimension of the Hénon attractor is about 
1.2 which specifies the active degrees of freedom or 
the complexity of the dynamical system on the 
reconstructed attractor.  

 
5. Nonlinear Dynamical Analysis of EEG Sleep 
5.1 EEG Sleep Data 

In this review, the EEG signal of the Fpz-Cz 
channel is analyzed and used for demonstration. 
The EEG signal is a part of the EEG data obtained 
from The Sleep-EDF Database available online at 
http://www.physionet.org/physiobank/database/sleep-
edf/. Electrophysiological data, including Fpz-Cz 
EEG, Pz-Oz EEG, horizontal EOG, submental EMG 
and event marker, were obtained from 4 subjects 
who had mild difficulty falling asleep but were 
otherwise healthy during a night in the hospital. 
Subjects and recordings are more extensively 
described in [44].  

The recordings were obtained using a digital 
telemetric system [45-46] with frequency response 

Fig. 4  Exemplary EEG signal associated with waking, stage 1, stage 2, slow wave sleep (stage 4), and REM (from top to 
bottom). 

range (3-dB points) 0.03-1,000 Hz. The EEG data 
were digitized with a sampling rate of 100 Hz and a 
14-bit A/D converter. The event marker was sampled 
at 1 Hz. Hypnograms are manually scored according 
to Rechtschaffen and Kales [8] based on the Fpz-Cz 
and Pz-Oz EEGs for every 30-second epoch of the 
EEG data, and classified into the following stages: 
waking (W), stage 1 (S1), stage 2 (S2), stage 3 
(S3), stage 4 (S4), REM (R), and movement time 
(M).  

Exemplary epochs of the EEG sleep data 
associated with waking, stage 1, stage 2, slow wave 
sleep (i.e., stage 4) and REM are illustrated in Fig. 4 
(from top to bottom). In general, the EEG of 
wakefulness and the EEG of stage 1 sleep are low 
voltage and contain fast activity. The EEG of 
wakefulness however contains more fast activity 
contents. Similarly, REM sleep is also characterized 
by fast and low-voltage EEG. The EEG of stage 2 
sleep clearly contains sleep spindle and K 
complexes. On the other hand, the EEG associated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

slow wave sleep (e.g., sleep stage 4) is high voltage 
and contains slow wave activity, as the name 
suggested.  
5.2 Characteristics of Dynamical Complexity of 

EEG Sleep 
The correlation dimension of the EEG sleep 

data compared to the corresponding hypnogram is 
shown in Fig. 5. Evidently, the correlation dimension 
of the EEG sleep varies corresponding to different 
sleep stage. It is also observed that the correlation 
dimension tends to decrease with deeper sleep 
stages from stage 1 to stage 4. Furthermore, a box 
plot shown in Fig. 6 compares the distribution of 
correlation dimension of the EEG sleep data 
associated with various sleep stages.  

Table 1 summarizes the statistical values 
including the mean and standard deviation values of 
the correlation dimension of the EEG sleep data 
associated with various sleep stages. The 
computational results show that the correlation 
dimension of the EEG during sleep tends to be 

Fig. 5  Correlation dimension of the EEG sleep data corresponding to various sleep stages. 
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the reconstructed attractor that is obtained using the 
method of time-delay embedding with the 
embedding dimension 2m   and the delay time 
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algorithm versus the logarithm of distance r  is 
shown as a solid line in Fig. 3. The log - log  plot 
shown in Fig. 3 manifests a linear relationship 
between   log C r  and  log r  for small 
distances r . The correlation dimension is thus 
estimated from the local slope of the log - log  plot. 
A dashed line plotted in Fig. 3 shows a straight line 
with a slope as the correlation dimension. The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
correlation dimension of the Hénon attractor is about 
1.2 which specifies the active degrees of freedom or 
the complexity of the dynamical system on the 
reconstructed attractor.  

 
5. Nonlinear Dynamical Analysis of EEG Sleep 
5.1 EEG Sleep Data 

In this review, the EEG signal of the Fpz-Cz 
channel is analyzed and used for demonstration. 
The EEG signal is a part of the EEG data obtained 
from The Sleep-EDF Database available online at 
http://www.physionet.org/physiobank/database/sleep-
edf/. Electrophysiological data, including Fpz-Cz 
EEG, Pz-Oz EEG, horizontal EOG, submental EMG 
and event marker, were obtained from 4 subjects 
who had mild difficulty falling asleep but were 
otherwise healthy during a night in the hospital. 
Subjects and recordings are more extensively 
described in [44].  

The recordings were obtained using a digital 
telemetric system [45-46] with frequency response 

Fig. 4  Exemplary EEG signal associated with waking, stage 1, stage 2, slow wave sleep (stage 4), and REM (from top to 
bottom). 

range (3-dB points) 0.03-1,000 Hz. The EEG data 
were digitized with a sampling rate of 100 Hz and a 
14-bit A/D converter. The event marker was sampled 
at 1 Hz. Hypnograms are manually scored according 
to Rechtschaffen and Kales [8] based on the Fpz-Cz 
and Pz-Oz EEGs for every 30-second epoch of the 
EEG data, and classified into the following stages: 
waking (W), stage 1 (S1), stage 2 (S2), stage 3 
(S3), stage 4 (S4), REM (R), and movement time 
(M).  

Exemplary epochs of the EEG sleep data 
associated with waking, stage 1, stage 2, slow wave 
sleep (i.e., stage 4) and REM are illustrated in Fig. 4 
(from top to bottom). In general, the EEG of 
wakefulness and the EEG of stage 1 sleep are low 
voltage and contain fast activity. The EEG of 
wakefulness however contains more fast activity 
contents. Similarly, REM sleep is also characterized 
by fast and low-voltage EEG. The EEG of stage 2 
sleep clearly contains sleep spindle and K 
complexes. On the other hand, the EEG associated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

slow wave sleep (e.g., sleep stage 4) is high voltage 
and contains slow wave activity, as the name 
suggested.  
5.2 Characteristics of Dynamical Complexity of 

EEG Sleep 
The correlation dimension of the EEG sleep 

data compared to the corresponding hypnogram is 
shown in Fig. 5. Evidently, the correlation dimension 
of the EEG sleep varies corresponding to different 
sleep stage. It is also observed that the correlation 
dimension tends to decrease with deeper sleep 
stages from stage 1 to stage 4. Furthermore, a box 
plot shown in Fig. 6 compares the distribution of 
correlation dimension of the EEG sleep data 
associated with various sleep stages.  

Table 1 summarizes the statistical values 
including the mean and standard deviation values of 
the correlation dimension of the EEG sleep data 
associated with various sleep stages. The 
computational results show that the correlation 
dimension of the EEG during sleep tends to be 

Fig. 5  Correlation dimension of the EEG sleep data corresponding to various sleep stages. 



วารสารวิชาการ วิศวกรรมศาสตร์ ม.อบ. ปีที่ 4 ฉบับที่ 1 มกราคม - มิถุนายน 255474

 
Table 1  The statistical values of the correlation dimension of 
the EEG sleep data corresponding to various sleep stages.  
 

Sleep Stage Mean 2D  Std 2D  
Stage 4 1.7969 0.2353 
Stage 3 2.6554 0.8245 
Stage 2 3.8042 0.7620 
Stage 1 4.0635 0.8850 
REM 3.4404 0.6684 

Waking 4.9265 0.9844 
Movement time 3.7987 0.3922 

   
lower than that during waking, and the correlation 
dimension of the EEG associated with a deeper 
sleep stage tends to be lower than that associated 
with a lighter sleep stage. This therefore implies that 
the underlying neuronal networks of the brain during 
a deeper sleep stage are associated with a less 
complex dynamics.  

To determine whether the EEG data associated 
with various sleep stages are actually different in the 
correlation dimension, the analysis of variance 
(ANOVA) is performed. From the ANOVA of the 
correlation dimensions of the EEG data associated 
with various sleep stages, the mean square, F -

statistic and p -values are 44.5627 , 87.6688  and 
1610 , respectively. The ANOVA results thus 

imply that the means of the correlation dimension of 
the EEG data associated with various sleep stages 
are significantly different. Furthermore, the statistical 
analysis results suggest that there are significant 
differences between the correlation dimensions of 
the EEG data during waking and during sleep. The 
correlation dimension of the EEG data associated 
with slow wave sleep (sleep stages 3 and 4) is 
significantly different from that of the EEG data 
associated with lighter sleep stages, i.e., sleep 
stages 1 and 2.  

 
6. Discussion 

Temporal patterns of the EEG have been 
shown to provide insight into the various functional 
states of neuronal networks in the brain [2]. 
Traditional linear analysis techniques, both in time 
and frequency domains, have been very valuable 
computational tools for EEG analysis and provide 
specific information along with their own 
assumptions and limitations. For example, the 
spectral analysis that is a fundamental analysis tool 
specifies the amount of constituent components 
corresponding to different frequencies of the EEG. 
Accordingly, the sharp spectral peaks are one of the 
features used to classify the EEG and discriminate 
the state of the brain. Nonlinear dynamical analysis 
can provide complementary information to traditional 
linear analysis techniques leading to a deeper 
understanding of the brain dynamics associated with 
different functional/physiological states [47-48]. The 
nonlinear dynamical systems need to be analyzed 
as a global system rather than in a modularized way 
for the linear dynamical systems.  

For the nonlinear dynamical analysis, the EEG 
signal, which is an observation of the dynamical 
system (i.e., neuronal networks), is first embedded 

Fig. 6  Comparison of the correlation dimension of the EEG 
sleep data corresponding to different sleep stages. 

into a higher dimensional state space to reconstruct 
an attractor representing a trajectory of the state of 
the neuronal networks. Knowledge of the attractor as 
a geometrical object in the state space provides a 
deeper understanding of the behavior of the 
underlying dynamics. The properties of the neuronal 
networks, which are usually expressed in terms of 
the complexity of the dynamical system, are then 
characterized from the reconstructed attractor. The 
correlation dimension, one of the most commonly 
used measures in nonlinear dynamical analysis, 
quantifies the active degrees of freedom or the 
complexity of the dynamics of the system.  

If a nonlinear dynamical system has a low-
dimensional chaotic attractor [49], the correlation 
dimension 

2D  is defined as the exponent   at small 
distances r  such that the correlation integral  C r  
has a power-law characteristic. This exponent can 
be estimated as the slope of the log-log  plot 
between  C r  and r  [11-12]. Therefore the 
working hypothesis when using the nonlinear 
dynamical analysis is that the neuronal networks in 
the brain that generate spontaneous EEG have a 
low-dimensional attractor. Subsequently, the 
correlation dimension 2D  specifies the complexity of 
the underlying dynamics of the neuronal networks.  

There is a controversy regarding the use of 
nonlinear dynamical analysis in the EEG analysis. 
The questions that emerge are related to whether or 
not the EEG time series contains nonlinear features 
and the underlying neuronal networks of the brain 
are nonlinear dynamical systems? The surrogate 
data testing introduced in [50-51] and refined in 
many subsequent works (e.g. [52-53]) is the method 
for verifying that a time series of interest is 
originated from a nonlinear dynamical system 
through statistical tests. If there is a statistically 
significant difference between the computational 
results of the original time series and the surrogate 

data time series, the null hypothesis that the original 
time series can be described by a stochastic linear 
model can be rejected [55].  

From several studies (e.g. [15-16],[18-19],[54-
55]), the consistent results were reported that the 
correlation dimension and the largest Lyapunov 
exponent decreased with sleep stages in adults from 
stage 1 to stage 4. Moreover, there were studies 
reporting that the correlation dimension of neonatal 
EEG sleep during quiet sleep stage was lower than 
during active sleep stage [48],[56]. There were 
however inconsistent findings regarding to the 
surrogate data testing. Using the surrogate data 
testing, evidence of nonlinear features in the EEG 
time series was found for a large number of subjects 
[51],[57-58]. On the other hand, some studies 
reported that it was not possible to distinguish the 
EEG time series from a linear stochastic time series 
(e.g. [59-60]).  

As evidenced in the computational results, the 
brain, as a complex dynamical system, appears to 
contain both high-dimensional processes (high 
correlation dimension) and low-dimensional 
processes (low correlation dimension). During sleep 
the underlying dynamics of neuronal networks 
associated with lower-dimensional processes is less 
complex while the underlying dynamics of neuronal 
networks during waking associated with higher-
dimensional processes is more complex. In addition, 
a decrease in the correlation dimension from lighter 
sleep stages to deeper sleep stages further indicates 
that the underlying dynamics of neuronal networks 
during a deeper sleep stage is less complex. There 
is thus a loss in complexity or dimensionality of the 
underlying dynamics of neuronal networks 
corresponding to deeper sleep stages. A loss in 
complexity or dimensionality of the underlying 
dynamics of neuronal networks is resulted from 
stronger coupled oscillations (stronger 
synchronization) of neuronal networks at deeper 
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Table 1  The statistical values of the correlation dimension of 
the EEG sleep data corresponding to various sleep stages.  
 

Sleep Stage Mean 2D  Std 2D  
Stage 4 1.7969 0.2353 
Stage 3 2.6554 0.8245 
Stage 2 3.8042 0.7620 
Stage 1 4.0635 0.8850 
REM 3.4404 0.6684 

Waking 4.9265 0.9844 
Movement time 3.7987 0.3922 

   
lower than that during waking, and the correlation 
dimension of the EEG associated with a deeper 
sleep stage tends to be lower than that associated 
with a lighter sleep stage. This therefore implies that 
the underlying neuronal networks of the brain during 
a deeper sleep stage are associated with a less 
complex dynamics.  

To determine whether the EEG data associated 
with various sleep stages are actually different in the 
correlation dimension, the analysis of variance 
(ANOVA) is performed. From the ANOVA of the 
correlation dimensions of the EEG data associated 
with various sleep stages, the mean square, F -

statistic and p -values are 44.5627 , 87.6688  and 
1610 , respectively. The ANOVA results thus 

imply that the means of the correlation dimension of 
the EEG data associated with various sleep stages 
are significantly different. Furthermore, the statistical 
analysis results suggest that there are significant 
differences between the correlation dimensions of 
the EEG data during waking and during sleep. The 
correlation dimension of the EEG data associated 
with slow wave sleep (sleep stages 3 and 4) is 
significantly different from that of the EEG data 
associated with lighter sleep stages, i.e., sleep 
stages 1 and 2.  

 
6. Discussion 

Temporal patterns of the EEG have been 
shown to provide insight into the various functional 
states of neuronal networks in the brain [2]. 
Traditional linear analysis techniques, both in time 
and frequency domains, have been very valuable 
computational tools for EEG analysis and provide 
specific information along with their own 
assumptions and limitations. For example, the 
spectral analysis that is a fundamental analysis tool 
specifies the amount of constituent components 
corresponding to different frequencies of the EEG. 
Accordingly, the sharp spectral peaks are one of the 
features used to classify the EEG and discriminate 
the state of the brain. Nonlinear dynamical analysis 
can provide complementary information to traditional 
linear analysis techniques leading to a deeper 
understanding of the brain dynamics associated with 
different functional/physiological states [47-48]. The 
nonlinear dynamical systems need to be analyzed 
as a global system rather than in a modularized way 
for the linear dynamical systems.  

For the nonlinear dynamical analysis, the EEG 
signal, which is an observation of the dynamical 
system (i.e., neuronal networks), is first embedded 

Fig. 6  Comparison of the correlation dimension of the EEG 
sleep data corresponding to different sleep stages. 

into a higher dimensional state space to reconstruct 
an attractor representing a trajectory of the state of 
the neuronal networks. Knowledge of the attractor as 
a geometrical object in the state space provides a 
deeper understanding of the behavior of the 
underlying dynamics. The properties of the neuronal 
networks, which are usually expressed in terms of 
the complexity of the dynamical system, are then 
characterized from the reconstructed attractor. The 
correlation dimension, one of the most commonly 
used measures in nonlinear dynamical analysis, 
quantifies the active degrees of freedom or the 
complexity of the dynamics of the system.  

If a nonlinear dynamical system has a low-
dimensional chaotic attractor [49], the correlation 
dimension 

2D  is defined as the exponent   at small 
distances r  such that the correlation integral  C r  
has a power-law characteristic. This exponent can 
be estimated as the slope of the log-log  plot 
between  C r  and r  [11-12]. Therefore the 
working hypothesis when using the nonlinear 
dynamical analysis is that the neuronal networks in 
the brain that generate spontaneous EEG have a 
low-dimensional attractor. Subsequently, the 
correlation dimension 2D  specifies the complexity of 
the underlying dynamics of the neuronal networks.  

There is a controversy regarding the use of 
nonlinear dynamical analysis in the EEG analysis. 
The questions that emerge are related to whether or 
not the EEG time series contains nonlinear features 
and the underlying neuronal networks of the brain 
are nonlinear dynamical systems? The surrogate 
data testing introduced in [50-51] and refined in 
many subsequent works (e.g. [52-53]) is the method 
for verifying that a time series of interest is 
originated from a nonlinear dynamical system 
through statistical tests. If there is a statistically 
significant difference between the computational 
results of the original time series and the surrogate 

data time series, the null hypothesis that the original 
time series can be described by a stochastic linear 
model can be rejected [55].  

From several studies (e.g. [15-16],[18-19],[54-
55]), the consistent results were reported that the 
correlation dimension and the largest Lyapunov 
exponent decreased with sleep stages in adults from 
stage 1 to stage 4. Moreover, there were studies 
reporting that the correlation dimension of neonatal 
EEG sleep during quiet sleep stage was lower than 
during active sleep stage [48],[56]. There were 
however inconsistent findings regarding to the 
surrogate data testing. Using the surrogate data 
testing, evidence of nonlinear features in the EEG 
time series was found for a large number of subjects 
[51],[57-58]. On the other hand, some studies 
reported that it was not possible to distinguish the 
EEG time series from a linear stochastic time series 
(e.g. [59-60]).  

As evidenced in the computational results, the 
brain, as a complex dynamical system, appears to 
contain both high-dimensional processes (high 
correlation dimension) and low-dimensional 
processes (low correlation dimension). During sleep 
the underlying dynamics of neuronal networks 
associated with lower-dimensional processes is less 
complex while the underlying dynamics of neuronal 
networks during waking associated with higher-
dimensional processes is more complex. In addition, 
a decrease in the correlation dimension from lighter 
sleep stages to deeper sleep stages further indicates 
that the underlying dynamics of neuronal networks 
during a deeper sleep stage is less complex. There 
is thus a loss in complexity or dimensionality of the 
underlying dynamics of neuronal networks 
corresponding to deeper sleep stages. A loss in 
complexity or dimensionality of the underlying 
dynamics of neuronal networks is resulted from 
stronger coupled oscillations (stronger 
synchronization) of neuronal networks at deeper 
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sleep stages. This leads to larger amplitude of EEG 
during a deeper sleep stage.  

The use of the nonlinear dynamical analysis 
can be viewed in two aspects. In one aspect, the 
concepts of nonlinear dynamical analysis and the 
computational tools for nonlinear dynamical analysis 
are used to explain the behaviors and the 
characteristics of the dynamical system, which in this 
presentation the dynamical system of interest is the 
neuronal networks in the brain. This provides more 
understandings on the underlying dynamics of the 
corresponding dynamical systems and also provides 
complementary information to traditional linear 
analyses. For instance, from the computational 
results presented in this article, the difference in the 
correlation dimension corresponding to various sleep 
stages suggests that the underlying dynamics of 
neuronal networks in the brain associated with 
different sleep stages are different. Furthermore, it is 
revealed that there is a stronger synchronization of 
neuronal networks at deeper sleep stages which 
results a loss in complexity or dimensionality of the 
underlying dynamics of neuronal networks in the 
brain. In another aspect, the measures obtained 
from the computational tools for the nonlinear 
dynamical analysis, which generally quantify the 
complexity of the dynamical system, are used for 
classifying and identifying the states of the 
dynamical system. The computational results show 
that the correlation dimensions of the EEG 
associated with various sleep stages are 
substantially different from each other. Accordingly, 
the correlation dimension has been used as a 
measure for sleep stage discrimination.  

This article presents the application of the 
nonlinear dynamical analysis, using the correlation 
dimension, in particular, as a measure, in EEG sleep 
analysis. However, the nonlinear dynamical analysis 
techniques have been applied to analyze EEG in a 
number of clinical situations. Epilepsy is another 

important application for nonlinear dynamical 
analysis. It is observed that the correlation 
dimension of the EEG during epileptic seizure 
activity is substantially less than that during non-
seizure activity. This might be due to a pathological 
loss of complexity [10]. In epilepsy research, the 
nonlinear dynamical analysis has been used for 
localization of the epileptogenic zone, and detection 
and prediction of epileptic seizures [10]. Recently, as 
prediction or anticipation of epileptic seizures using 
the nonlinear dynamical analysis has become a hot 
topic [10], there are a number of reviews in this topic 
(for example, [61-63]) have appeared.  

In conclusion, in this article the basic concepts 
of nonlinear dynamical analysis are introduced, and 
also the application of nonlinear dynamical analysis 
in EEG sleep analysis is demonstrated. The 
nonlinear dynamical analysis techniques have been 
applied for various applications. However, caution 
and care must be used in both computation and 
interpretation of the results because the proper 
computation and interpretation of the correlation 
dimension involves some pitfalls, caution and care 
must be used in both computation and interpretation 
of the results. In practice, the estimate of correlation 
dimension may not exactly quantify the active 
degrees of freedom of the underlying dynamics of 
the brain. The nonlinear dynamical measures 
obtained from the nonlinear dynamical analysis such 
as the correlation dimension can however be used 
for characterizing the physiological or pathological 
states of the brain.  
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can be viewed in two aspects. In one aspect, the 
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are used to explain the behaviors and the 
characteristics of the dynamical system, which in this 
presentation the dynamical system of interest is the 
neuronal networks in the brain. This provides more 
understandings on the underlying dynamics of the 
corresponding dynamical systems and also provides 
complementary information to traditional linear 
analyses. For instance, from the computational 
results presented in this article, the difference in the 
correlation dimension corresponding to various sleep 
stages suggests that the underlying dynamics of 
neuronal networks in the brain associated with 
different sleep stages are different. Furthermore, it is 
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neuronal networks at deeper sleep stages which 
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underlying dynamics of neuronal networks in the 
brain. In another aspect, the measures obtained 
from the computational tools for the nonlinear 
dynamical analysis, which generally quantify the 
complexity of the dynamical system, are used for 
classifying and identifying the states of the 
dynamical system. The computational results show 
that the correlation dimensions of the EEG 
associated with various sleep stages are 
substantially different from each other. Accordingly, 
the correlation dimension has been used as a 
measure for sleep stage discrimination.  

This article presents the application of the 
nonlinear dynamical analysis, using the correlation 
dimension, in particular, as a measure, in EEG sleep 
analysis. However, the nonlinear dynamical analysis 
techniques have been applied to analyze EEG in a 
number of clinical situations. Epilepsy is another 

important application for nonlinear dynamical 
analysis. It is observed that the correlation 
dimension of the EEG during epileptic seizure 
activity is substantially less than that during non-
seizure activity. This might be due to a pathological 
loss of complexity [10]. In epilepsy research, the 
nonlinear dynamical analysis has been used for 
localization of the epileptogenic zone, and detection 
and prediction of epileptic seizures [10]. Recently, as 
prediction or anticipation of epileptic seizures using 
the nonlinear dynamical analysis has become a hot 
topic [10], there are a number of reviews in this topic 
(for example, [61-63]) have appeared.  

In conclusion, in this article the basic concepts 
of nonlinear dynamical analysis are introduced, and 
also the application of nonlinear dynamical analysis 
in EEG sleep analysis is demonstrated. The 
nonlinear dynamical analysis techniques have been 
applied for various applications. However, caution 
and care must be used in both computation and 
interpretation of the results because the proper 
computation and interpretation of the correlation 
dimension involves some pitfalls, caution and care 
must be used in both computation and interpretation 
of the results. In practice, the estimate of correlation 
dimension may not exactly quantify the active 
degrees of freedom of the underlying dynamics of 
the brain. The nonlinear dynamical measures 
obtained from the nonlinear dynamical analysis such 
as the correlation dimension can however be used 
for characterizing the physiological or pathological 
states of the brain.  
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